Answer
Verified
498k+ views
Hint: Convert all ‘sin’ into ‘cos’ except \[\sin 6{}^\circ \], then make an adjustment so that you can use the formula \[\sin 2x=2\times \sin x\times \cos x\] every time till we don’t get the answer.
To prove the equation given above we will write the equation first,
$\sin 6{}^\circ \sin 42{}^\circ \sin 66{}^\circ \sin 78{}^\circ =\dfrac{1}{16}$
Consider the Left Hand Side of the equation,
L.H.S. (Left Hand Side) $=\sin 6{}^\circ \sin 42{}^\circ \sin 66{}^\circ \sin 78{}^\circ $
As we all know that any angle $\theta $ can be replaced by $\left[ 90-\left( 90-\theta \right) \right]$ therefore we can write L.H.S. as shown below,
L.H.S. (Left Hand Side) $=\sin 6{}^\circ \times \sin \left[ 90{}^\circ -\left( 90{}^\circ -42{}^\circ \right) \right]\sin \left[ 90{}^\circ -\left( 90{}^\circ -66{}^\circ \right) \right]\times \sin \left[ 90{}^\circ -\left( 90{}^\circ -78{}^\circ \right) \right]$
Therefore by simplification we can write,
L.H.S. (Left Hand Side) \[=\sin 6{}^\circ \times \sin \left[ 90{}^\circ -48{}^\circ \right]\times \sin \left[ 90{}^\circ -24{}^\circ \right]\times \sin \left[ 90{}^\circ -12{}^\circ \right]\]
To proceed further in the solution we should know the formula given below,
Formula:
\[\sin \left( 90{}^\circ -\theta {}^\circ \right)=\cos \theta {}^\circ \]
By using the above formula we can write the L.H.S. as shown below,
\[\therefore \] L.H.S. (Left Hand Side) \[=\sin 6{}^\circ \times \cos 48{}^\circ \times \cos 24{}^\circ \times \cos 12{}^\circ \]
On rearranging the above equation we will get,
\[\therefore \] L.H.S. (Left Hand Side) \[=\sin 6{}^\circ \times \cos 12{}^\circ \times \cos 24{}^\circ \times \cos 48{}^\circ \]
If we observe the above equation carefully then we can say that the equation can be arranged such that it will take the form of sin2x.
Therefore we will multiply and divide the equation by \[2\cos 6{}^\circ \] therefore we will get,
\[\therefore \] L.H.S. (Left Hand Side) \[=\sin 6{}^\circ \times \dfrac{2\cos 6{}^\circ }{2\cos 6{}^\circ }\times \cos 12{}^\circ \times \cos 24{}^\circ \times \cos 48{}^\circ \]
On rearranging the above equation we will get,
\[\therefore \] L.H.S. (Left Hand Side) \[=\dfrac{2\times \sin 6{}^\circ \times \cos 6{}^\circ }{2\times \cos 6{}^\circ }\times \cos 12{}^\circ \times \cos 24{}^\circ \times \cos 48{}^\circ \]
To proceed further in the solution we should know the formula given below,
Formula:
\[\sin 2x=2\times \sin x\times \cos x\] ……………………………… (i)
By using above formula we can write the above equation as,
\[\therefore \] L.H.S. (Left Hand Side) \[=\dfrac{\sin \left( 2\times 6{}^\circ \right)}{2\cos 6{}^\circ }\times \cos 12{}^\circ \times \cos 24{}^\circ \times \cos 48{}^\circ \]
\[\therefore \] L.H.S. (Left Hand Side) \[=\dfrac{\sin 12{}^\circ }{2\cos 6{}^\circ }\times \cos 12{}^\circ \times \cos 24{}^\circ \times \cos 48{}^\circ \]
On rearranging the above equation we will get,
\[\therefore \] L.H.S. (Left Hand Side) \[=\dfrac{\sin 12{}^\circ \times \cos 12{}^\circ \times \cos 24{}^\circ \times \cos 48{}^\circ }{2\cos 6{}^\circ }\]
Multiplying and dividing the above equation by 2 we will get,
\[\therefore \] L.H.S. (Left Hand Side) \[=\dfrac{\left( 2\times \sin 12{}^\circ \times \cos 12{}^\circ \right)\times \cos 24{}^\circ \times \cos 48{}^\circ }{2\times 2\times \cos 6{}^\circ }\]
By using the formula (i) we will get,
\[\therefore \] L.H.S. (Left Hand Side) \[=\dfrac{\sin 2\left( 12{}^\circ \right)\times \cos 24{}^\circ \times \cos 48{}^\circ }{4\times \cos 6{}^\circ }\]
\[\therefore \] L.H.S. (Left Hand Side) \[=\dfrac{\sin 24{}^\circ \times \cos 24{}^\circ \times \cos 48{}^\circ }{4\times \cos 6{}^\circ }\]
Multiplying and dividing the above equation by 2 we will get,
\[\therefore \] L.H.S. (Left Hand Side) \[=\dfrac{\left( 2\times \sin 24{}^\circ \times \cos 24{}^\circ \right)\times \cos 48{}^\circ }{2\times 4\times \cos 6{}^\circ }\]
By using the formula (i) we will get,
\[\therefore \] L.H.S. (Left Hand Side) \[=\dfrac{\sin 2\left( 24{}^\circ \right)\times \cos 48{}^\circ }{8\times \cos 6{}^\circ }\]
\[\therefore \] L.H.S. (Left Hand Side) \[=\dfrac{\sin 48{}^\circ \times \cos 48{}^\circ }{8\times \cos 6{}^\circ }\]
Multiplying and dividing the above equation by 2 we will get,
\[\therefore \] L.H.S. (Left Hand Side) \[=\dfrac{2\times \sin 48{}^\circ \times \cos 48{}^\circ }{2\times 8\times \cos 6{}^\circ }\]
By using the formula (i) we will get,
\[\therefore \] L.H.S. (Left Hand Side) \[=\dfrac{\sin 2\left( 48{}^\circ \right)}{16\times \cos 6{}^\circ }\]
\[\therefore \] L.H.S. (Left Hand Side) \[=\dfrac{\sin 96{}^\circ }{16\times \cos 6{}^\circ }\]
Above equation can also be written as,
\[\therefore \] L.H.S. (Left Hand Side) \[=\dfrac{\sin \left( 90{}^\circ +6{}^\circ \right)}{16\times \cos 6{}^\circ }\]
To proceed further we should know the formula given below,
Formula:
\[\sin \left( 90+\theta \right)=\cos \theta \]
By using above formula we can write the above equation as,
\[\therefore \] L.H.S. (Left Hand Side) \[=\dfrac{\cos 6{}^\circ }{16\times \cos 6{}^\circ }\]
\[\therefore \] L.H.S. (Left Hand Side) \[=\dfrac{1}{16}\]
\[\therefore \] L.H.S. (Left Hand Side) = R.H.S. (Right Hand Side)
\[\therefore \] $\sin 6{}^\circ \sin 42{}^\circ \sin 66{}^\circ \sin 78{}^\circ =\dfrac{1}{16}$
Hence proved.
Note: Do not use the formula of ‘2 sinC sinD’ as by using this formula the solution will become very much lengthy and difficult to solve.
To prove the equation given above we will write the equation first,
$\sin 6{}^\circ \sin 42{}^\circ \sin 66{}^\circ \sin 78{}^\circ =\dfrac{1}{16}$
Consider the Left Hand Side of the equation,
L.H.S. (Left Hand Side) $=\sin 6{}^\circ \sin 42{}^\circ \sin 66{}^\circ \sin 78{}^\circ $
As we all know that any angle $\theta $ can be replaced by $\left[ 90-\left( 90-\theta \right) \right]$ therefore we can write L.H.S. as shown below,
L.H.S. (Left Hand Side) $=\sin 6{}^\circ \times \sin \left[ 90{}^\circ -\left( 90{}^\circ -42{}^\circ \right) \right]\sin \left[ 90{}^\circ -\left( 90{}^\circ -66{}^\circ \right) \right]\times \sin \left[ 90{}^\circ -\left( 90{}^\circ -78{}^\circ \right) \right]$
Therefore by simplification we can write,
L.H.S. (Left Hand Side) \[=\sin 6{}^\circ \times \sin \left[ 90{}^\circ -48{}^\circ \right]\times \sin \left[ 90{}^\circ -24{}^\circ \right]\times \sin \left[ 90{}^\circ -12{}^\circ \right]\]
To proceed further in the solution we should know the formula given below,
Formula:
\[\sin \left( 90{}^\circ -\theta {}^\circ \right)=\cos \theta {}^\circ \]
By using the above formula we can write the L.H.S. as shown below,
\[\therefore \] L.H.S. (Left Hand Side) \[=\sin 6{}^\circ \times \cos 48{}^\circ \times \cos 24{}^\circ \times \cos 12{}^\circ \]
On rearranging the above equation we will get,
\[\therefore \] L.H.S. (Left Hand Side) \[=\sin 6{}^\circ \times \cos 12{}^\circ \times \cos 24{}^\circ \times \cos 48{}^\circ \]
If we observe the above equation carefully then we can say that the equation can be arranged such that it will take the form of sin2x.
Therefore we will multiply and divide the equation by \[2\cos 6{}^\circ \] therefore we will get,
\[\therefore \] L.H.S. (Left Hand Side) \[=\sin 6{}^\circ \times \dfrac{2\cos 6{}^\circ }{2\cos 6{}^\circ }\times \cos 12{}^\circ \times \cos 24{}^\circ \times \cos 48{}^\circ \]
On rearranging the above equation we will get,
\[\therefore \] L.H.S. (Left Hand Side) \[=\dfrac{2\times \sin 6{}^\circ \times \cos 6{}^\circ }{2\times \cos 6{}^\circ }\times \cos 12{}^\circ \times \cos 24{}^\circ \times \cos 48{}^\circ \]
To proceed further in the solution we should know the formula given below,
Formula:
\[\sin 2x=2\times \sin x\times \cos x\] ……………………………… (i)
By using above formula we can write the above equation as,
\[\therefore \] L.H.S. (Left Hand Side) \[=\dfrac{\sin \left( 2\times 6{}^\circ \right)}{2\cos 6{}^\circ }\times \cos 12{}^\circ \times \cos 24{}^\circ \times \cos 48{}^\circ \]
\[\therefore \] L.H.S. (Left Hand Side) \[=\dfrac{\sin 12{}^\circ }{2\cos 6{}^\circ }\times \cos 12{}^\circ \times \cos 24{}^\circ \times \cos 48{}^\circ \]
On rearranging the above equation we will get,
\[\therefore \] L.H.S. (Left Hand Side) \[=\dfrac{\sin 12{}^\circ \times \cos 12{}^\circ \times \cos 24{}^\circ \times \cos 48{}^\circ }{2\cos 6{}^\circ }\]
Multiplying and dividing the above equation by 2 we will get,
\[\therefore \] L.H.S. (Left Hand Side) \[=\dfrac{\left( 2\times \sin 12{}^\circ \times \cos 12{}^\circ \right)\times \cos 24{}^\circ \times \cos 48{}^\circ }{2\times 2\times \cos 6{}^\circ }\]
By using the formula (i) we will get,
\[\therefore \] L.H.S. (Left Hand Side) \[=\dfrac{\sin 2\left( 12{}^\circ \right)\times \cos 24{}^\circ \times \cos 48{}^\circ }{4\times \cos 6{}^\circ }\]
\[\therefore \] L.H.S. (Left Hand Side) \[=\dfrac{\sin 24{}^\circ \times \cos 24{}^\circ \times \cos 48{}^\circ }{4\times \cos 6{}^\circ }\]
Multiplying and dividing the above equation by 2 we will get,
\[\therefore \] L.H.S. (Left Hand Side) \[=\dfrac{\left( 2\times \sin 24{}^\circ \times \cos 24{}^\circ \right)\times \cos 48{}^\circ }{2\times 4\times \cos 6{}^\circ }\]
By using the formula (i) we will get,
\[\therefore \] L.H.S. (Left Hand Side) \[=\dfrac{\sin 2\left( 24{}^\circ \right)\times \cos 48{}^\circ }{8\times \cos 6{}^\circ }\]
\[\therefore \] L.H.S. (Left Hand Side) \[=\dfrac{\sin 48{}^\circ \times \cos 48{}^\circ }{8\times \cos 6{}^\circ }\]
Multiplying and dividing the above equation by 2 we will get,
\[\therefore \] L.H.S. (Left Hand Side) \[=\dfrac{2\times \sin 48{}^\circ \times \cos 48{}^\circ }{2\times 8\times \cos 6{}^\circ }\]
By using the formula (i) we will get,
\[\therefore \] L.H.S. (Left Hand Side) \[=\dfrac{\sin 2\left( 48{}^\circ \right)}{16\times \cos 6{}^\circ }\]
\[\therefore \] L.H.S. (Left Hand Side) \[=\dfrac{\sin 96{}^\circ }{16\times \cos 6{}^\circ }\]
Above equation can also be written as,
\[\therefore \] L.H.S. (Left Hand Side) \[=\dfrac{\sin \left( 90{}^\circ +6{}^\circ \right)}{16\times \cos 6{}^\circ }\]
To proceed further we should know the formula given below,
Formula:
\[\sin \left( 90+\theta \right)=\cos \theta \]
By using above formula we can write the above equation as,
\[\therefore \] L.H.S. (Left Hand Side) \[=\dfrac{\cos 6{}^\circ }{16\times \cos 6{}^\circ }\]
\[\therefore \] L.H.S. (Left Hand Side) \[=\dfrac{1}{16}\]
\[\therefore \] L.H.S. (Left Hand Side) = R.H.S. (Right Hand Side)
\[\therefore \] $\sin 6{}^\circ \sin 42{}^\circ \sin 66{}^\circ \sin 78{}^\circ =\dfrac{1}{16}$
Hence proved.
Note: Do not use the formula of ‘2 sinC sinD’ as by using this formula the solution will become very much lengthy and difficult to solve.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE