Answer
Verified
442.8k+ views
Hint: We recall the definition of sine and cosine hyperbolic function as $\sinh x=\dfrac{{{e}^{x}}-{{e}^{-x}}}{2}$ and $\cosh x=\dfrac{{{e}^{x}}+{{e}^{-x}}}{2}$. We begin from right hand side of the given statement and simplify using the exponential identity ${{a}^{m+n}}={{a}^{m}}\cdot {{a}^{n}}$ to arrive at the left hand side. \[\]
Complete step-by-step solution:
We know that hyperbolic functions are functions analogous to ordinary trigonometric functions defined for the hyperbola, rather than the circle which is means just $\left( \cos t,\sin t \right)$ with parameter $t$ represents a circle with unit radius, the point $\left( \cosh t,\sinh t \right)$ represent form the right half of the equilateral parabola.
The basic hyperbolic functions are sine hyperbolic function $\left( \sinh x: R\to R \right)$ and cosine hyperbolic function $\left( \cosh x:R\to R \right)$. All the other hyperbolic functions are derived from hyperbolic sine and hyperbolic cosine. \[\]
The hyperbolic sine is defined in terms of exponential function ${{e}^{x}}$ as,
\[\sinh x=\dfrac{{{e}^{x}}-{{e}^{-x}}}{2}\]
The hyperbolic cosine is defined in terms of exponential function ${{e}^{x}}$ as,
\[\cosh x=\dfrac{{{e}^{x}}+{{e}^{-x}}}{2}\]
We are asked to prove the following statement
\[\sinh A+\sinh B=2\sinh \left( \dfrac{A+B}{2} \right)\cosh \left( \dfrac{A-B}{2} \right)\]
We shall begin simplifying fro right hand side that is
\[2\sinh \left( \dfrac{A+B}{2} \right)\cosh \left( \dfrac{A-B}{2} \right)\]
We use the definition of sine hyperbolic function in terms of exponential for $x=\dfrac{A+B}{2}$ to have;
\[\sinh \left( \dfrac{A+B}{2} \right)=\dfrac{{{e}^{\dfrac{A+B}{2}}}-{{e}^{-\dfrac{A+B}{2}}}}{2}\]
We use the definition of cosine hyperbolic function in terms of exponential for $x=\dfrac{A-B}{2}$ to have;
\[\cosh \left( \dfrac{A-B}{2} \right)=\dfrac{{{e}^{\dfrac{A-B}{2}}}+{{e}^{-\dfrac{A-B}{2}}}}{2}\]
We put the $\sinh \left( \dfrac{A+B}{2} \right)\cosh \left( \dfrac{A-B}{2} \right)$ in the right hand side of the statement to have;
\[\begin{align}
& \Rightarrow 2\sinh \left( \dfrac{A+B}{2} \right)\cosh \left( \dfrac{A-B}{2} \right) \\
& \Rightarrow 2\dfrac{{{e}^{\dfrac{A+B}{2}}}-{{e}^{-\dfrac{A+B}{2}}}}{2}\times \dfrac{{{e}^{\dfrac{A-B}{2}}}+{{e}^{-\dfrac{A-B}{2}}}}{2} \\
& \Rightarrow \dfrac{\left( {{e}^{\dfrac{A+B}{2}}}-{{e}^{{-}\dfrac{A+B}{2}}} \right)\left( {{e}^{\dfrac{A-B}{2}}}+e{^{{-}\dfrac{A-B}{2}}} \right)}{2} \\
& \Rightarrow \dfrac{{{e}^{\dfrac{A+B}{2}}}{{e}^{\dfrac{A-B}{2}}}+{{e}^{\dfrac{A+B}{2}}}{{e}^{-\dfrac{A-B}{2}}}-{{e}^{-\dfrac{A+B}{2}}}{{e}^{\dfrac{A-B}{2}}}-{{e}^{-\dfrac{A+B}{2}}}{{e}^{-\dfrac{A-B}{2}}}}{2} \\
\end{align}\]
We use the exponential identity ${{a}^{m}}\cdot {{a}^{n}}={{a}^{m+n}}$ in the above step to have;
\[\begin{align}
& \Rightarrow \dfrac{{{e}^{\dfrac{A+B+A-B}{2}}}+{{e}^{\dfrac{A+B-A+B}{2}}}-{{e}^{\dfrac{-A-B+A-B}{2}}}-{{e}^{\dfrac{-A-B-A+B}{2}}}}{2} \\
& \Rightarrow \dfrac{{{e}^{\dfrac{2A}{2}}}+{{e}^{\dfrac{2B}{2}}}-{{e}^{\dfrac{-2B}{2}}}-{{e}^{\dfrac{-2A}{2}}}}{2} \\
& \Rightarrow \dfrac{{{e}^{A}}+{{e}^{B}}-{{e}^{-B}}-{{e}^{-A}}}{2} \\
& \Rightarrow \dfrac{{{e}^{A}}-{{e}^{-A}}}{2}+\dfrac{{{e}^{B}}-{{e}^{-B}}}{2} \\
\end{align}\]
We use the definition of sine hyperbolic for $x=A,B$ in the above step to have
\[\Rightarrow \sinh A+\sinh B\]
The above result is on the left hand side of the statement. Hence it is proved.
Note: We note that a statement becomes identity when the statement is true for all parameters. The given statement is true for all $A,B$ and hence it is an identity. The trigonometric equivalent of the given identity is $\sin A+\sin B=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)$. We can alternatively prove using identities sum and difference of arguments of sine hyperbolic $\sinh \left( x+y \right)=\sinh x\cosh y+\cosh x\sinh y$ and $\sin \left( x-y \right)=\sinh x\cosh y-\cosh x\sinh y$.
Complete step-by-step solution:
We know that hyperbolic functions are functions analogous to ordinary trigonometric functions defined for the hyperbola, rather than the circle which is means just $\left( \cos t,\sin t \right)$ with parameter $t$ represents a circle with unit radius, the point $\left( \cosh t,\sinh t \right)$ represent form the right half of the equilateral parabola.
The basic hyperbolic functions are sine hyperbolic function $\left( \sinh x: R\to R \right)$ and cosine hyperbolic function $\left( \cosh x:R\to R \right)$. All the other hyperbolic functions are derived from hyperbolic sine and hyperbolic cosine. \[\]
The hyperbolic sine is defined in terms of exponential function ${{e}^{x}}$ as,
\[\sinh x=\dfrac{{{e}^{x}}-{{e}^{-x}}}{2}\]
The hyperbolic cosine is defined in terms of exponential function ${{e}^{x}}$ as,
\[\cosh x=\dfrac{{{e}^{x}}+{{e}^{-x}}}{2}\]
We are asked to prove the following statement
\[\sinh A+\sinh B=2\sinh \left( \dfrac{A+B}{2} \right)\cosh \left( \dfrac{A-B}{2} \right)\]
We shall begin simplifying fro right hand side that is
\[2\sinh \left( \dfrac{A+B}{2} \right)\cosh \left( \dfrac{A-B}{2} \right)\]
We use the definition of sine hyperbolic function in terms of exponential for $x=\dfrac{A+B}{2}$ to have;
\[\sinh \left( \dfrac{A+B}{2} \right)=\dfrac{{{e}^{\dfrac{A+B}{2}}}-{{e}^{-\dfrac{A+B}{2}}}}{2}\]
We use the definition of cosine hyperbolic function in terms of exponential for $x=\dfrac{A-B}{2}$ to have;
\[\cosh \left( \dfrac{A-B}{2} \right)=\dfrac{{{e}^{\dfrac{A-B}{2}}}+{{e}^{-\dfrac{A-B}{2}}}}{2}\]
We put the $\sinh \left( \dfrac{A+B}{2} \right)\cosh \left( \dfrac{A-B}{2} \right)$ in the right hand side of the statement to have;
\[\begin{align}
& \Rightarrow 2\sinh \left( \dfrac{A+B}{2} \right)\cosh \left( \dfrac{A-B}{2} \right) \\
& \Rightarrow 2\dfrac{{{e}^{\dfrac{A+B}{2}}}-{{e}^{-\dfrac{A+B}{2}}}}{2}\times \dfrac{{{e}^{\dfrac{A-B}{2}}}+{{e}^{-\dfrac{A-B}{2}}}}{2} \\
& \Rightarrow \dfrac{\left( {{e}^{\dfrac{A+B}{2}}}-{{e}^{{-}\dfrac{A+B}{2}}} \right)\left( {{e}^{\dfrac{A-B}{2}}}+e{^{{-}\dfrac{A-B}{2}}} \right)}{2} \\
& \Rightarrow \dfrac{{{e}^{\dfrac{A+B}{2}}}{{e}^{\dfrac{A-B}{2}}}+{{e}^{\dfrac{A+B}{2}}}{{e}^{-\dfrac{A-B}{2}}}-{{e}^{-\dfrac{A+B}{2}}}{{e}^{\dfrac{A-B}{2}}}-{{e}^{-\dfrac{A+B}{2}}}{{e}^{-\dfrac{A-B}{2}}}}{2} \\
\end{align}\]
We use the exponential identity ${{a}^{m}}\cdot {{a}^{n}}={{a}^{m+n}}$ in the above step to have;
\[\begin{align}
& \Rightarrow \dfrac{{{e}^{\dfrac{A+B+A-B}{2}}}+{{e}^{\dfrac{A+B-A+B}{2}}}-{{e}^{\dfrac{-A-B+A-B}{2}}}-{{e}^{\dfrac{-A-B-A+B}{2}}}}{2} \\
& \Rightarrow \dfrac{{{e}^{\dfrac{2A}{2}}}+{{e}^{\dfrac{2B}{2}}}-{{e}^{\dfrac{-2B}{2}}}-{{e}^{\dfrac{-2A}{2}}}}{2} \\
& \Rightarrow \dfrac{{{e}^{A}}+{{e}^{B}}-{{e}^{-B}}-{{e}^{-A}}}{2} \\
& \Rightarrow \dfrac{{{e}^{A}}-{{e}^{-A}}}{2}+\dfrac{{{e}^{B}}-{{e}^{-B}}}{2} \\
\end{align}\]
We use the definition of sine hyperbolic for $x=A,B$ in the above step to have
\[\Rightarrow \sinh A+\sinh B\]
The above result is on the left hand side of the statement. Hence it is proved.
Note: We note that a statement becomes identity when the statement is true for all parameters. The given statement is true for all $A,B$ and hence it is an identity. The trigonometric equivalent of the given identity is $\sin A+\sin B=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)$. We can alternatively prove using identities sum and difference of arguments of sine hyperbolic $\sinh \left( x+y \right)=\sinh x\cosh y+\cosh x\sinh y$ and $\sin \left( x-y \right)=\sinh x\cosh y-\cosh x\sinh y$.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE