Answer
Verified
499.5k+ views
Hint: To solve expressions with irrational value in the denominator , first rationalise the denominator by multiplying it with its conjugate.
First we will consider the left hand side of the equation. We are given $LHS={{\cot }^{-1}}\left( \dfrac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}} \right)$.
Now, we can see that the denominator is irrational . So , we need to rationalise it first. We can do this by multiplying and dividing by its conjugate , i.e. $\sqrt{1+\sin x}+\sqrt{1-\sin x}$ .
So , we have $LHS={{\cot }^{-1}}\left( \dfrac{\left( \sqrt{1+\sin x}+\sqrt{1-\sin x} \right)}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\times \dfrac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}+\sqrt{1-\sin x}} \right)$
$={{\cot }^{-1}}\left( \dfrac{{{\left( \sqrt{1+\sin x}+\sqrt{1-\sin x} \right)}^{2}}}{(\sqrt{1+\sin x}-\sqrt{1-\sin x})(\sqrt{1+\sin x}+\sqrt{1-\sin x})} \right)$
Now, we know \[{{(a+b)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab\]. Using this identity in the numerator, we get
$={{\cot }^{-1}}\left( \dfrac{1+\sin x+1-\sin x+2\sqrt{\left( 1+\sin x \right)\left( 1-\sin x \right)}}{(\sqrt{1+\sin x}-\sqrt{1-\sin x})(\sqrt{1+\sin x}+\sqrt{1-\sin x})} \right)$
Now , we know \[(a+b)(a-b)={{a}^{2}}-{{b}^{2}}\]. Using this identity in the denominator , we get
$={{\cot }^{-1}}\left( \dfrac{2+2\sqrt{\left( 1+\sin x \right)\left( 1-\sin x \right)}}{(1+\sin x)-(1-\sin x)} \right)$
$={{\cot }^{-1}}\left( \dfrac{2+2\sqrt{1-{{\sin }^{2}}x}}{2\sin x} \right)$
Now, we know ${{\cos }^{2}}x+{{\sin }^{2}}x=1\Rightarrow 1-{{\sin }^{2}}={{\cos }^{2}}x$
Now, we will substitute $1-{{\sin }^{2}}={{\cos }^{2}}x$ in the numerator of the L.H.S .
On substituting $1-{{\sin }^{2}}={{\cos }^{2}}x$ in the numerator of the L.H.S , we get
L.H.S$={{\cot }^{-1}}\left( \dfrac{2+2\cos x}{2\sin x} \right)$
Now,
We know, $1+\cos \theta =2{{\cos }^{2}}\dfrac{\theta }{2}$
And $\sin \theta =2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}$
So, we will substitute $1+\cos \theta =2{{\cos }^{2}}\dfrac{\theta }{2}$ in the numerator of the L.H.S and $\sin \theta =2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}$in the denominator of the L.H.S.
On substituting $1+\cos \theta =2{{\cos }^{2}}\dfrac{\theta }{2}$ and $\sin \theta =2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}$ in the left hand side of the equation, we get
L.H.S $={{\cot }^{-1}}\left( \dfrac{2{{\cos }^{2}}\dfrac{x}{2}}{2\sin \dfrac{x}{2}\cos \dfrac{x}{2}} \right)$
\[={{\cot }^{-1}}\left( \cot \dfrac{x}{2} \right)\]
\[=\dfrac{x}{2}\]
Now, we will consider the right hand side of the equation.
The value given in the right hand side of the equation is equal to \[\dfrac{x}{2}\].
Now, we can see that the value obtained by solving the expression in the left hand side of the equation and the value given in the right hand side of the equation are equal.
So, L.H.S = R.H.S
Hence proved.
Note: Remember that conjugate of $\sqrt{a}+\sqrt{b}$ is $\sqrt{a}-\sqrt{b}$ and not $\left( -\sqrt{a}-\sqrt{b} \right)$. Students generally make this mistake and get their answer wrong.
First we will consider the left hand side of the equation. We are given $LHS={{\cot }^{-1}}\left( \dfrac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}} \right)$.
Now, we can see that the denominator is irrational . So , we need to rationalise it first. We can do this by multiplying and dividing by its conjugate , i.e. $\sqrt{1+\sin x}+\sqrt{1-\sin x}$ .
So , we have $LHS={{\cot }^{-1}}\left( \dfrac{\left( \sqrt{1+\sin x}+\sqrt{1-\sin x} \right)}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\times \dfrac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}+\sqrt{1-\sin x}} \right)$
$={{\cot }^{-1}}\left( \dfrac{{{\left( \sqrt{1+\sin x}+\sqrt{1-\sin x} \right)}^{2}}}{(\sqrt{1+\sin x}-\sqrt{1-\sin x})(\sqrt{1+\sin x}+\sqrt{1-\sin x})} \right)$
Now, we know \[{{(a+b)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab\]. Using this identity in the numerator, we get
$={{\cot }^{-1}}\left( \dfrac{1+\sin x+1-\sin x+2\sqrt{\left( 1+\sin x \right)\left( 1-\sin x \right)}}{(\sqrt{1+\sin x}-\sqrt{1-\sin x})(\sqrt{1+\sin x}+\sqrt{1-\sin x})} \right)$
Now , we know \[(a+b)(a-b)={{a}^{2}}-{{b}^{2}}\]. Using this identity in the denominator , we get
$={{\cot }^{-1}}\left( \dfrac{2+2\sqrt{\left( 1+\sin x \right)\left( 1-\sin x \right)}}{(1+\sin x)-(1-\sin x)} \right)$
$={{\cot }^{-1}}\left( \dfrac{2+2\sqrt{1-{{\sin }^{2}}x}}{2\sin x} \right)$
Now, we know ${{\cos }^{2}}x+{{\sin }^{2}}x=1\Rightarrow 1-{{\sin }^{2}}={{\cos }^{2}}x$
Now, we will substitute $1-{{\sin }^{2}}={{\cos }^{2}}x$ in the numerator of the L.H.S .
On substituting $1-{{\sin }^{2}}={{\cos }^{2}}x$ in the numerator of the L.H.S , we get
L.H.S$={{\cot }^{-1}}\left( \dfrac{2+2\cos x}{2\sin x} \right)$
Now,
We know, $1+\cos \theta =2{{\cos }^{2}}\dfrac{\theta }{2}$
And $\sin \theta =2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}$
So, we will substitute $1+\cos \theta =2{{\cos }^{2}}\dfrac{\theta }{2}$ in the numerator of the L.H.S and $\sin \theta =2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}$in the denominator of the L.H.S.
On substituting $1+\cos \theta =2{{\cos }^{2}}\dfrac{\theta }{2}$ and $\sin \theta =2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}$ in the left hand side of the equation, we get
L.H.S $={{\cot }^{-1}}\left( \dfrac{2{{\cos }^{2}}\dfrac{x}{2}}{2\sin \dfrac{x}{2}\cos \dfrac{x}{2}} \right)$
\[={{\cot }^{-1}}\left( \cot \dfrac{x}{2} \right)\]
\[=\dfrac{x}{2}\]
Now, we will consider the right hand side of the equation.
The value given in the right hand side of the equation is equal to \[\dfrac{x}{2}\].
Now, we can see that the value obtained by solving the expression in the left hand side of the equation and the value given in the right hand side of the equation are equal.
So, L.H.S = R.H.S
Hence proved.
Note: Remember that conjugate of $\sqrt{a}+\sqrt{b}$ is $\sqrt{a}-\sqrt{b}$ and not $\left( -\sqrt{a}-\sqrt{b} \right)$. Students generally make this mistake and get their answer wrong.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE