Answer
Verified
499.5k+ views
Hint: Here we perform various operations on rows and columns of determinant to make it simple.
Taking the left-hand side of the questions and solving it further so that the left-hand side will become
equal to the right-hand side. So,
$ \Rightarrow $L. H. S =\[\left| {\begin{array}{*{20}{c}}
{{{\left( {b + c} \right)}^2}}&{{a^2}}&{{a^2}} \\
{{b^2}}&{{{(c + a)}^2}}&{{b^2}} \\
{{c^2}}&{{c^2}}&{{{(a + b)}^2}}
\end{array}} \right|\]
Now, to simplify the determinant we will do various operations so that the determinant becomes
easy and we can expand the determinant without any error. Expanding the determinant can be done
before simplification but, it will make the solution tedious and complicated. So, we will simplify the
determinant and then expand it. So, for simplification we will first subtract the column \[{C_3}\]from
the column ${C_1}$.
Applying ${C_1} \to {C_1} - {C_3}$
$ \Rightarrow $L. H. S = $\left| {\begin{array}{*{20}{c}}
{{{(b + c)}^2} - {a^2}}&{{a^2}}&{{a^2}} \\
{{b^2} - {b^2}}&{{{(c + a)}^2}}&{{b^2}} \\
{{c^2} - {{(a + b)}^2}}&{{c^2}}&{{{(a + b)}^2}}
\end{array}} \right|$
Also applying ${C_2} \to {C_2} - {C_3}$
$ \Rightarrow $L. H. S = $\left| {\begin{array}{*{20}{c}}
{{{(b + c)}^2} - {a^2}}&{{a^2} - {a^2}}&{{a^2}} \\
{{b^2} - {b^2}}&{{{(c + a)}^2} - {b^2}}&{{b^2}} \\
{{c^2} - {{(a + b)}^2}}&{{c^2} - {{(a + b)}^2}}&{{{(a + b)}^2}}
\end{array}} \right|$ ……………... (1)
Taking \[(a + b + c)\] common from column ${C_1}$and column \[{C_2}\]
$ \Rightarrow $L. H. S = ${(a + b + c)^2}\left| {\begin{array}{*{20}{c}}
{b + c - a}&0&{{a^2}} \\
0&{c + a - b}&{{b^2}} \\
{c - (a + b)}&{c - (a + b)}&{{{(a + b)}^2}}
\end{array}} \right|$
Also, applying ${R_3} \to {R_3} - {R_1} - {R_2}$
$ \Rightarrow $L. H. S = \[{(a + b + c)^2}\left| {\begin{array}{*{20}{c}}
{b + c - a}&0&{{a^2}} \\
0&{c + a - b}&{{b^2}} \\
{ - 2b}&{ - 2a}&{2ab}
\end{array}} \right|\]
Now, multiply and divide column ${C_1}$ by $a$ and column \[{C_2}\] by $b$.
$ \Rightarrow $L. H. S = \[\dfrac{{{{(a + b + c)}^2}}}{{ab}}\left| {\begin{array}{*{20}{c}}
{ab + ac - {a^2}}&0&{{a^2}} \\
0&{bc + ab - {b^2}}&{{b^2}} \\
{ - 2ab}&{ - 2ab}&{2ab}
\end{array}} \right|\]
Now, doing ${C_1} \to {C_1} + {C_3}$and ${C_2} \to {C_2} + {C_3}$
$ \Rightarrow $L. H. S = \[\dfrac{{{{(a + b + c)}^2}}}{{ab}}\left| {\begin{array}{*{20}{c}}
{ab + ac - {a^2} + {a^2}}&{{a^2}}&{{a^2}} \\
{{b^2}}&{bc + ab - {b^2} + {b^2}}&{{b^2}} \\
{ - 2ab + 2ab}&{ - 2ab + 2ab}&{2ab}
\end{array}} \right|\]
$ \Rightarrow $L. H. S = \[\dfrac{{{{(a + b + c)}^2}}}{{ab}}\left| {\begin{array}{*{20}{c}}
{ab + ac}&{{a^2}}&{{a^2}} \\
{{b^2}}&{bc + ab}&{{b^2}} \\
0&0&{2ab}
\end{array}} \right|\]
Now, our determinant has become simple. So, expanding determinant through row \[{R_3}\],
$ \Rightarrow $L. H. S = \[\dfrac{{{{(a + b + c)}^2}}}{{ab}}(2ab)\left| {\begin{array}{*{20}{c}}
{ab + ac}&{{a^2}} \\
{{b^2}}&{bc + ab}
\end{array}} \right|\]
$ \Rightarrow $L. H. S = \[\dfrac{{{{(a + b + c)}^2}}}{{ab}}(2ab)(ab)\{ (b + c)(c + a) - ab\} \]
$ \Rightarrow $L. H. S = \[\dfrac{{{{(a + b + c)}^2}}}{{ab}}(2ab)(ab)(bc + ab + {c^2} + ac - ab)\]
$ \Rightarrow $L. H. S = \[2abc{(a + b + c)^3}\]= R. H. S
Hence Proved.
Note: Such problems are easy but require a lot of concentration while doing. If there is lack of
concentration, then the problem may not be solved. Also, properties of determinant are important to
solve problems but without them the problem can be solved but the process is very complicated and
tedious as it includes many terms. Make the determinant as simple as possible to easily expand it.
Taking the left-hand side of the questions and solving it further so that the left-hand side will become
equal to the right-hand side. So,
$ \Rightarrow $L. H. S =\[\left| {\begin{array}{*{20}{c}}
{{{\left( {b + c} \right)}^2}}&{{a^2}}&{{a^2}} \\
{{b^2}}&{{{(c + a)}^2}}&{{b^2}} \\
{{c^2}}&{{c^2}}&{{{(a + b)}^2}}
\end{array}} \right|\]
Now, to simplify the determinant we will do various operations so that the determinant becomes
easy and we can expand the determinant without any error. Expanding the determinant can be done
before simplification but, it will make the solution tedious and complicated. So, we will simplify the
determinant and then expand it. So, for simplification we will first subtract the column \[{C_3}\]from
the column ${C_1}$.
Applying ${C_1} \to {C_1} - {C_3}$
$ \Rightarrow $L. H. S = $\left| {\begin{array}{*{20}{c}}
{{{(b + c)}^2} - {a^2}}&{{a^2}}&{{a^2}} \\
{{b^2} - {b^2}}&{{{(c + a)}^2}}&{{b^2}} \\
{{c^2} - {{(a + b)}^2}}&{{c^2}}&{{{(a + b)}^2}}
\end{array}} \right|$
Also applying ${C_2} \to {C_2} - {C_3}$
$ \Rightarrow $L. H. S = $\left| {\begin{array}{*{20}{c}}
{{{(b + c)}^2} - {a^2}}&{{a^2} - {a^2}}&{{a^2}} \\
{{b^2} - {b^2}}&{{{(c + a)}^2} - {b^2}}&{{b^2}} \\
{{c^2} - {{(a + b)}^2}}&{{c^2} - {{(a + b)}^2}}&{{{(a + b)}^2}}
\end{array}} \right|$ ……………... (1)
Taking \[(a + b + c)\] common from column ${C_1}$and column \[{C_2}\]
$ \Rightarrow $L. H. S = ${(a + b + c)^2}\left| {\begin{array}{*{20}{c}}
{b + c - a}&0&{{a^2}} \\
0&{c + a - b}&{{b^2}} \\
{c - (a + b)}&{c - (a + b)}&{{{(a + b)}^2}}
\end{array}} \right|$
Also, applying ${R_3} \to {R_3} - {R_1} - {R_2}$
$ \Rightarrow $L. H. S = \[{(a + b + c)^2}\left| {\begin{array}{*{20}{c}}
{b + c - a}&0&{{a^2}} \\
0&{c + a - b}&{{b^2}} \\
{ - 2b}&{ - 2a}&{2ab}
\end{array}} \right|\]
Now, multiply and divide column ${C_1}$ by $a$ and column \[{C_2}\] by $b$.
$ \Rightarrow $L. H. S = \[\dfrac{{{{(a + b + c)}^2}}}{{ab}}\left| {\begin{array}{*{20}{c}}
{ab + ac - {a^2}}&0&{{a^2}} \\
0&{bc + ab - {b^2}}&{{b^2}} \\
{ - 2ab}&{ - 2ab}&{2ab}
\end{array}} \right|\]
Now, doing ${C_1} \to {C_1} + {C_3}$and ${C_2} \to {C_2} + {C_3}$
$ \Rightarrow $L. H. S = \[\dfrac{{{{(a + b + c)}^2}}}{{ab}}\left| {\begin{array}{*{20}{c}}
{ab + ac - {a^2} + {a^2}}&{{a^2}}&{{a^2}} \\
{{b^2}}&{bc + ab - {b^2} + {b^2}}&{{b^2}} \\
{ - 2ab + 2ab}&{ - 2ab + 2ab}&{2ab}
\end{array}} \right|\]
$ \Rightarrow $L. H. S = \[\dfrac{{{{(a + b + c)}^2}}}{{ab}}\left| {\begin{array}{*{20}{c}}
{ab + ac}&{{a^2}}&{{a^2}} \\
{{b^2}}&{bc + ab}&{{b^2}} \\
0&0&{2ab}
\end{array}} \right|\]
Now, our determinant has become simple. So, expanding determinant through row \[{R_3}\],
$ \Rightarrow $L. H. S = \[\dfrac{{{{(a + b + c)}^2}}}{{ab}}(2ab)\left| {\begin{array}{*{20}{c}}
{ab + ac}&{{a^2}} \\
{{b^2}}&{bc + ab}
\end{array}} \right|\]
$ \Rightarrow $L. H. S = \[\dfrac{{{{(a + b + c)}^2}}}{{ab}}(2ab)(ab)\{ (b + c)(c + a) - ab\} \]
$ \Rightarrow $L. H. S = \[\dfrac{{{{(a + b + c)}^2}}}{{ab}}(2ab)(ab)(bc + ab + {c^2} + ac - ab)\]
$ \Rightarrow $L. H. S = \[2abc{(a + b + c)^3}\]= R. H. S
Hence Proved.
Note: Such problems are easy but require a lot of concentration while doing. If there is lack of
concentration, then the problem may not be solved. Also, properties of determinant are important to
solve problems but without them the problem can be solved but the process is very complicated and
tedious as it includes many terms. Make the determinant as simple as possible to easily expand it.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE