Answer
Verified
442.8k+ views
Hint:
We start solving the problem by recalling the facts that $ 0 < \tan x < 1 $ , for $ 0 < x < \dfrac{\pi }{4} $ and $ 1 < \tan x < \infty $ , for $ \dfrac{\pi }{4} < x < \dfrac{\pi }{2} $ , $ 0 < \cot x < 1 $ , for $ \dfrac{\pi }{4} < x < \dfrac{\pi }{2} $ and \[1 < \cot x < \infty \], for $ 0 < x < \dfrac{\pi }{4} $ . We then consider the interval $ 0 < x < \dfrac{\pi }{4} $ and make use of the results $ {{\tan }^{-1}}a+{{\tan }^{-1}}b=\left\{ \begin{matrix}
{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right);ab < 1 \\
\pi +{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right);ab > 1,a,b > 0 \\
-\pi +{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right);ab > 1,a,b < 0 \\
\end{matrix} \right. $ to proceed through the problem. We then make the necessary calculations and make use of the results $ \cot x=\dfrac{1}{\tan x} $ , $ \tan 2x=\dfrac{2\tan x}{1-{{\tan }^{2}}x} $ and $ {{\tan }^{-1}}\left( -x \right)=-{{\tan }^{-1}}\left( x \right) $ to get the required answer. We follow similar procedure by considering the interval $ \dfrac{\pi }{4} < x < \dfrac{\pi }{2} $ to complete the given result.
Complete step by step answer:
According to the problem, we are asked to prove the given result: $ {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)=\left\{ \begin{matrix}
0,\text{ if }\dfrac{\pi }{4} < x < \dfrac{\pi }{2} \\
\pi ,\text{ if }0 < x < \dfrac{\pi }{4} \\
\end{matrix} \right. $ .
We know that $ 0 < \tan x < 1 $ , for $ 0 < x < \dfrac{\pi }{4} $ and $ 1 < \tan x < \infty $ , for $ \dfrac{\pi }{4} < x < \dfrac{\pi }{2} $ .
Also $ 0 < \cot x < 1 $ , for $ \dfrac{\pi }{4} < x < \dfrac{\pi }{2} $ and \[1 < \cot x < \infty \], for $ 0 < x < \dfrac{\pi }{4} $ .
Let us take the interval $ 0 < x < \dfrac{\pi }{4} $ .
Now, let us consider $ {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right) $ .
We know that $ {{\tan }^{-1}}a+{{\tan }^{-1}}b=\left\{ \begin{matrix}
{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right);ab < 1 \\
\pi +{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right);ab > 1,a,b > 0 \\
-\pi +{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right);ab > 1,a,b < 0 \\
\end{matrix} \right. $ .
So, we have \[1 < \cot x < \infty \], for $ 0 < x < \dfrac{\pi }{4} $ so, we get \[1 < {{\cot }^{3}}x < \infty \], for $ 0 < x < \dfrac{\pi }{4} $ . So, we get $ \left( \cot x \right)\left( {{\cot }^{3}}x \right) > 1 $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+\pi +{{\tan }^{-1}}\left( \dfrac{\cot A+{{\cot }^{3}}A}{1-\left( \cot A \right)\left( {{\cot }^{3}}A \right)} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+\pi +{{\tan }^{-1}}\left( \dfrac{\cot A+{{\cot }^{3}}A}{1-{{\cot }^{4}}A} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+\pi +{{\tan }^{-1}}\left( \dfrac{\cot x\left( 1+{{\cot }^{2}}A \right)}{\left( 1+{{\cot }^{2}}A \right)\left( 1-{{\cot }^{2}}A \right)} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+\pi +{{\tan }^{-1}}\left( \dfrac{\cot A}{1-{{\cot }^{2}}A} \right) $ .
We know that $ \cot x=\dfrac{1}{\tan x} $ and $ \tan 2x=\dfrac{2\tan x}{1-{{\tan }^{2}}x} $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\times \left( \dfrac{2\tan A}{1-{{\tan }^{2}}A} \right) \right)+\pi +{{\tan }^{-1}}\left( \dfrac{\dfrac{1}{\tan A}}{1-\dfrac{1}{{{\tan }^{2}}A}} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{\tan A}{1-{{\tan }^{2}}A} \right)+\pi +{{\tan }^{-1}}\left( \dfrac{\tan A}{{{\tan }^{2}}A-1} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{\tan A}{1-{{\tan }^{2}}A} \right)+\pi +{{\tan }^{-1}}\left( \dfrac{-\tan A}{1-{{\tan }^{2}}A} \right) $ .
We know that $ {{\tan }^{-1}}\left( -x \right)=-{{\tan }^{-1}}\left( x \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{\tan A}{1-{{\tan }^{2}}A} \right)+\pi -{{\tan }^{-1}}\left( \dfrac{\tan A}{1-{{\tan }^{2}}A} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)=\pi $ , for $ 0 < x < \dfrac{\pi }{4} $ ---(1).
Now, let us consider the interval $ \dfrac{\pi }{4} < x < \dfrac{\pi }{2} $ .
So, we have $ 0 < \cot x < 1 $ , for $ 0 < x < \dfrac{\pi }{4} $ so, we get \[0 < {{\cot }^{3}}x < 1\], for $ 0 < x < \dfrac{\pi }{4} $ . So, we get $ \left( \cot x \right)\left( {{\cot }^{3}}x \right) < 1 $ .
We know that $ {{\tan }^{-1}}a+{{\tan }^{-1}}b=\left\{ \begin{matrix}
{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right);ab < 1 \\
\pi +{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right);ab > 1,a,b > 0 \\
-\pi +{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right);ab > 1,a,b < 0 \\
\end{matrix} \right. $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \dfrac{\cot A+{{\cot }^{3}}A}{1-\left( \cot A \right)\left( {{\cot }^{3}}A \right)} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \dfrac{\cot A+{{\cot }^{3}}A}{1-{{\cot }^{4}}A} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \dfrac{\cot x\left( 1+{{\cot }^{2}}A \right)}{\left( 1+{{\cot }^{2}}A \right)\left( 1-{{\cot }^{2}}A \right)} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \dfrac{\cot A}{1-{{\cot }^{2}}A} \right) $ .
We know that $ \cot x=\dfrac{1}{\tan x} $ and $ \tan 2x=\dfrac{2\tan x}{1-{{\tan }^{2}}x} $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\times \left( \dfrac{2\tan A}{1-{{\tan }^{2}}A} \right) \right)+{{\tan }^{-1}}\left( \dfrac{\dfrac{1}{\tan A}}{1-\dfrac{1}{{{\tan }^{2}}A}} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{\tan A}{1-{{\tan }^{2}}A} \right)+{{\tan }^{-1}}\left( \dfrac{\tan A}{{{\tan }^{2}}A-1} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{\tan A}{1-{{\tan }^{2}}A} \right)+{{\tan }^{-1}}\left( \dfrac{-\tan A}{1-{{\tan }^{2}}A} \right) $ .
We know that $ {{\tan }^{-1}}\left( -x \right)=-{{\tan }^{-1}}\left( x \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{\tan A}{1-{{\tan }^{2}}A} \right)-{{\tan }^{-1}}\left( \dfrac{\tan A}{1-{{\tan }^{2}}A} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)=0 $ , for $ \dfrac{\pi }{4} < x < \dfrac{\pi }{2} $ ---(2).
From equations (1) and (2), we can see that we have proved the result $ {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)=\left\{ \begin{matrix}
0,\text{ if }\dfrac{\pi }{4} < x < \dfrac{\pi }{2} \\
\pi ,\text{ if }0 < x < \dfrac{\pi }{4} \\
\end{matrix} \right. $ .
Note:
We can see that the given problem contains a huge amount of calculation so, we need to perform each step carefully to avoid confusion. We should not always consider $ {{\tan }^{-1}}a+{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right) $ , as this is not valid for every value of a and b. Whenever we get the problems involving a sum of inverse tangent terms, we should check the product of the terms present inside the inverse. Similarly, we can expect problem to check the continuity of function at $ x=0 $ and $ x=\dfrac{\pi }{4} $ .
We start solving the problem by recalling the facts that $ 0 < \tan x < 1 $ , for $ 0 < x < \dfrac{\pi }{4} $ and $ 1 < \tan x < \infty $ , for $ \dfrac{\pi }{4} < x < \dfrac{\pi }{2} $ , $ 0 < \cot x < 1 $ , for $ \dfrac{\pi }{4} < x < \dfrac{\pi }{2} $ and \[1 < \cot x < \infty \], for $ 0 < x < \dfrac{\pi }{4} $ . We then consider the interval $ 0 < x < \dfrac{\pi }{4} $ and make use of the results $ {{\tan }^{-1}}a+{{\tan }^{-1}}b=\left\{ \begin{matrix}
{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right);ab < 1 \\
\pi +{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right);ab > 1,a,b > 0 \\
-\pi +{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right);ab > 1,a,b < 0 \\
\end{matrix} \right. $ to proceed through the problem. We then make the necessary calculations and make use of the results $ \cot x=\dfrac{1}{\tan x} $ , $ \tan 2x=\dfrac{2\tan x}{1-{{\tan }^{2}}x} $ and $ {{\tan }^{-1}}\left( -x \right)=-{{\tan }^{-1}}\left( x \right) $ to get the required answer. We follow similar procedure by considering the interval $ \dfrac{\pi }{4} < x < \dfrac{\pi }{2} $ to complete the given result.
Complete step by step answer:
According to the problem, we are asked to prove the given result: $ {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)=\left\{ \begin{matrix}
0,\text{ if }\dfrac{\pi }{4} < x < \dfrac{\pi }{2} \\
\pi ,\text{ if }0 < x < \dfrac{\pi }{4} \\
\end{matrix} \right. $ .
We know that $ 0 < \tan x < 1 $ , for $ 0 < x < \dfrac{\pi }{4} $ and $ 1 < \tan x < \infty $ , for $ \dfrac{\pi }{4} < x < \dfrac{\pi }{2} $ .
Also $ 0 < \cot x < 1 $ , for $ \dfrac{\pi }{4} < x < \dfrac{\pi }{2} $ and \[1 < \cot x < \infty \], for $ 0 < x < \dfrac{\pi }{4} $ .
Let us take the interval $ 0 < x < \dfrac{\pi }{4} $ .
Now, let us consider $ {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right) $ .
We know that $ {{\tan }^{-1}}a+{{\tan }^{-1}}b=\left\{ \begin{matrix}
{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right);ab < 1 \\
\pi +{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right);ab > 1,a,b > 0 \\
-\pi +{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right);ab > 1,a,b < 0 \\
\end{matrix} \right. $ .
So, we have \[1 < \cot x < \infty \], for $ 0 < x < \dfrac{\pi }{4} $ so, we get \[1 < {{\cot }^{3}}x < \infty \], for $ 0 < x < \dfrac{\pi }{4} $ . So, we get $ \left( \cot x \right)\left( {{\cot }^{3}}x \right) > 1 $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+\pi +{{\tan }^{-1}}\left( \dfrac{\cot A+{{\cot }^{3}}A}{1-\left( \cot A \right)\left( {{\cot }^{3}}A \right)} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+\pi +{{\tan }^{-1}}\left( \dfrac{\cot A+{{\cot }^{3}}A}{1-{{\cot }^{4}}A} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+\pi +{{\tan }^{-1}}\left( \dfrac{\cot x\left( 1+{{\cot }^{2}}A \right)}{\left( 1+{{\cot }^{2}}A \right)\left( 1-{{\cot }^{2}}A \right)} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+\pi +{{\tan }^{-1}}\left( \dfrac{\cot A}{1-{{\cot }^{2}}A} \right) $ .
We know that $ \cot x=\dfrac{1}{\tan x} $ and $ \tan 2x=\dfrac{2\tan x}{1-{{\tan }^{2}}x} $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\times \left( \dfrac{2\tan A}{1-{{\tan }^{2}}A} \right) \right)+\pi +{{\tan }^{-1}}\left( \dfrac{\dfrac{1}{\tan A}}{1-\dfrac{1}{{{\tan }^{2}}A}} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{\tan A}{1-{{\tan }^{2}}A} \right)+\pi +{{\tan }^{-1}}\left( \dfrac{\tan A}{{{\tan }^{2}}A-1} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{\tan A}{1-{{\tan }^{2}}A} \right)+\pi +{{\tan }^{-1}}\left( \dfrac{-\tan A}{1-{{\tan }^{2}}A} \right) $ .
We know that $ {{\tan }^{-1}}\left( -x \right)=-{{\tan }^{-1}}\left( x \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{\tan A}{1-{{\tan }^{2}}A} \right)+\pi -{{\tan }^{-1}}\left( \dfrac{\tan A}{1-{{\tan }^{2}}A} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)=\pi $ , for $ 0 < x < \dfrac{\pi }{4} $ ---(1).
Now, let us consider the interval $ \dfrac{\pi }{4} < x < \dfrac{\pi }{2} $ .
So, we have $ 0 < \cot x < 1 $ , for $ 0 < x < \dfrac{\pi }{4} $ so, we get \[0 < {{\cot }^{3}}x < 1\], for $ 0 < x < \dfrac{\pi }{4} $ . So, we get $ \left( \cot x \right)\left( {{\cot }^{3}}x \right) < 1 $ .
We know that $ {{\tan }^{-1}}a+{{\tan }^{-1}}b=\left\{ \begin{matrix}
{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right);ab < 1 \\
\pi +{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right);ab > 1,a,b > 0 \\
-\pi +{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right);ab > 1,a,b < 0 \\
\end{matrix} \right. $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \dfrac{\cot A+{{\cot }^{3}}A}{1-\left( \cot A \right)\left( {{\cot }^{3}}A \right)} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \dfrac{\cot A+{{\cot }^{3}}A}{1-{{\cot }^{4}}A} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \dfrac{\cot x\left( 1+{{\cot }^{2}}A \right)}{\left( 1+{{\cot }^{2}}A \right)\left( 1-{{\cot }^{2}}A \right)} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \dfrac{\cot A}{1-{{\cot }^{2}}A} \right) $ .
We know that $ \cot x=\dfrac{1}{\tan x} $ and $ \tan 2x=\dfrac{2\tan x}{1-{{\tan }^{2}}x} $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\times \left( \dfrac{2\tan A}{1-{{\tan }^{2}}A} \right) \right)+{{\tan }^{-1}}\left( \dfrac{\dfrac{1}{\tan A}}{1-\dfrac{1}{{{\tan }^{2}}A}} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{\tan A}{1-{{\tan }^{2}}A} \right)+{{\tan }^{-1}}\left( \dfrac{\tan A}{{{\tan }^{2}}A-1} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{\tan A}{1-{{\tan }^{2}}A} \right)+{{\tan }^{-1}}\left( \dfrac{-\tan A}{1-{{\tan }^{2}}A} \right) $ .
We know that $ {{\tan }^{-1}}\left( -x \right)=-{{\tan }^{-1}}\left( x \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{\tan A}{1-{{\tan }^{2}}A} \right)-{{\tan }^{-1}}\left( \dfrac{\tan A}{1-{{\tan }^{2}}A} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)=0 $ , for $ \dfrac{\pi }{4} < x < \dfrac{\pi }{2} $ ---(2).
From equations (1) and (2), we can see that we have proved the result $ {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)=\left\{ \begin{matrix}
0,\text{ if }\dfrac{\pi }{4} < x < \dfrac{\pi }{2} \\
\pi ,\text{ if }0 < x < \dfrac{\pi }{4} \\
\end{matrix} \right. $ .
Note:
We can see that the given problem contains a huge amount of calculation so, we need to perform each step carefully to avoid confusion. We should not always consider $ {{\tan }^{-1}}a+{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right) $ , as this is not valid for every value of a and b. Whenever we get the problems involving a sum of inverse tangent terms, we should check the product of the terms present inside the inverse. Similarly, we can expect problem to check the continuity of function at $ x=0 $ and $ x=\dfrac{\pi }{4} $ .
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE