
Prove the following result of inverse trigonometric functions:
$ {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)=\left\{ \begin{matrix}
0,\text{ if }\dfrac{\pi }{4} < x < \dfrac{\pi }{2} \\
\pi ,\text{ if }0 < x < \dfrac{\pi }{4} \\
\end{matrix} \right. $ .
Answer
565.5k+ views
Hint:
We start solving the problem by recalling the facts that $ 0 < \tan x < 1 $ , for $ 0 < x < \dfrac{\pi }{4} $ and $ 1 < \tan x < \infty $ , for $ \dfrac{\pi }{4} < x < \dfrac{\pi }{2} $ , $ 0 < \cot x < 1 $ , for $ \dfrac{\pi }{4} < x < \dfrac{\pi }{2} $ and \[1 < \cot x < \infty \], for $ 0 < x < \dfrac{\pi }{4} $ . We then consider the interval $ 0 < x < \dfrac{\pi }{4} $ and make use of the results $ {{\tan }^{-1}}a+{{\tan }^{-1}}b=\left\{ \begin{matrix}
{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right);ab < 1 \\
\pi +{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right);ab > 1,a,b > 0 \\
-\pi +{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right);ab > 1,a,b < 0 \\
\end{matrix} \right. $ to proceed through the problem. We then make the necessary calculations and make use of the results $ \cot x=\dfrac{1}{\tan x} $ , $ \tan 2x=\dfrac{2\tan x}{1-{{\tan }^{2}}x} $ and $ {{\tan }^{-1}}\left( -x \right)=-{{\tan }^{-1}}\left( x \right) $ to get the required answer. We follow similar procedure by considering the interval $ \dfrac{\pi }{4} < x < \dfrac{\pi }{2} $ to complete the given result.
Complete step by step answer:
According to the problem, we are asked to prove the given result: $ {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)=\left\{ \begin{matrix}
0,\text{ if }\dfrac{\pi }{4} < x < \dfrac{\pi }{2} \\
\pi ,\text{ if }0 < x < \dfrac{\pi }{4} \\
\end{matrix} \right. $ .
We know that $ 0 < \tan x < 1 $ , for $ 0 < x < \dfrac{\pi }{4} $ and $ 1 < \tan x < \infty $ , for $ \dfrac{\pi }{4} < x < \dfrac{\pi }{2} $ .
Also $ 0 < \cot x < 1 $ , for $ \dfrac{\pi }{4} < x < \dfrac{\pi }{2} $ and \[1 < \cot x < \infty \], for $ 0 < x < \dfrac{\pi }{4} $ .
Let us take the interval $ 0 < x < \dfrac{\pi }{4} $ .
Now, let us consider $ {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right) $ .
We know that $ {{\tan }^{-1}}a+{{\tan }^{-1}}b=\left\{ \begin{matrix}
{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right);ab < 1 \\
\pi +{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right);ab > 1,a,b > 0 \\
-\pi +{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right);ab > 1,a,b < 0 \\
\end{matrix} \right. $ .
So, we have \[1 < \cot x < \infty \], for $ 0 < x < \dfrac{\pi }{4} $ so, we get \[1 < {{\cot }^{3}}x < \infty \], for $ 0 < x < \dfrac{\pi }{4} $ . So, we get $ \left( \cot x \right)\left( {{\cot }^{3}}x \right) > 1 $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+\pi +{{\tan }^{-1}}\left( \dfrac{\cot A+{{\cot }^{3}}A}{1-\left( \cot A \right)\left( {{\cot }^{3}}A \right)} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+\pi +{{\tan }^{-1}}\left( \dfrac{\cot A+{{\cot }^{3}}A}{1-{{\cot }^{4}}A} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+\pi +{{\tan }^{-1}}\left( \dfrac{\cot x\left( 1+{{\cot }^{2}}A \right)}{\left( 1+{{\cot }^{2}}A \right)\left( 1-{{\cot }^{2}}A \right)} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+\pi +{{\tan }^{-1}}\left( \dfrac{\cot A}{1-{{\cot }^{2}}A} \right) $ .
We know that $ \cot x=\dfrac{1}{\tan x} $ and $ \tan 2x=\dfrac{2\tan x}{1-{{\tan }^{2}}x} $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\times \left( \dfrac{2\tan A}{1-{{\tan }^{2}}A} \right) \right)+\pi +{{\tan }^{-1}}\left( \dfrac{\dfrac{1}{\tan A}}{1-\dfrac{1}{{{\tan }^{2}}A}} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{\tan A}{1-{{\tan }^{2}}A} \right)+\pi +{{\tan }^{-1}}\left( \dfrac{\tan A}{{{\tan }^{2}}A-1} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{\tan A}{1-{{\tan }^{2}}A} \right)+\pi +{{\tan }^{-1}}\left( \dfrac{-\tan A}{1-{{\tan }^{2}}A} \right) $ .
We know that $ {{\tan }^{-1}}\left( -x \right)=-{{\tan }^{-1}}\left( x \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{\tan A}{1-{{\tan }^{2}}A} \right)+\pi -{{\tan }^{-1}}\left( \dfrac{\tan A}{1-{{\tan }^{2}}A} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)=\pi $ , for $ 0 < x < \dfrac{\pi }{4} $ ---(1).
Now, let us consider the interval $ \dfrac{\pi }{4} < x < \dfrac{\pi }{2} $ .
So, we have $ 0 < \cot x < 1 $ , for $ 0 < x < \dfrac{\pi }{4} $ so, we get \[0 < {{\cot }^{3}}x < 1\], for $ 0 < x < \dfrac{\pi }{4} $ . So, we get $ \left( \cot x \right)\left( {{\cot }^{3}}x \right) < 1 $ .
We know that $ {{\tan }^{-1}}a+{{\tan }^{-1}}b=\left\{ \begin{matrix}
{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right);ab < 1 \\
\pi +{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right);ab > 1,a,b > 0 \\
-\pi +{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right);ab > 1,a,b < 0 \\
\end{matrix} \right. $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \dfrac{\cot A+{{\cot }^{3}}A}{1-\left( \cot A \right)\left( {{\cot }^{3}}A \right)} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \dfrac{\cot A+{{\cot }^{3}}A}{1-{{\cot }^{4}}A} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \dfrac{\cot x\left( 1+{{\cot }^{2}}A \right)}{\left( 1+{{\cot }^{2}}A \right)\left( 1-{{\cot }^{2}}A \right)} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \dfrac{\cot A}{1-{{\cot }^{2}}A} \right) $ .
We know that $ \cot x=\dfrac{1}{\tan x} $ and $ \tan 2x=\dfrac{2\tan x}{1-{{\tan }^{2}}x} $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\times \left( \dfrac{2\tan A}{1-{{\tan }^{2}}A} \right) \right)+{{\tan }^{-1}}\left( \dfrac{\dfrac{1}{\tan A}}{1-\dfrac{1}{{{\tan }^{2}}A}} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{\tan A}{1-{{\tan }^{2}}A} \right)+{{\tan }^{-1}}\left( \dfrac{\tan A}{{{\tan }^{2}}A-1} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{\tan A}{1-{{\tan }^{2}}A} \right)+{{\tan }^{-1}}\left( \dfrac{-\tan A}{1-{{\tan }^{2}}A} \right) $ .
We know that $ {{\tan }^{-1}}\left( -x \right)=-{{\tan }^{-1}}\left( x \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{\tan A}{1-{{\tan }^{2}}A} \right)-{{\tan }^{-1}}\left( \dfrac{\tan A}{1-{{\tan }^{2}}A} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)=0 $ , for $ \dfrac{\pi }{4} < x < \dfrac{\pi }{2} $ ---(2).
From equations (1) and (2), we can see that we have proved the result $ {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)=\left\{ \begin{matrix}
0,\text{ if }\dfrac{\pi }{4} < x < \dfrac{\pi }{2} \\
\pi ,\text{ if }0 < x < \dfrac{\pi }{4} \\
\end{matrix} \right. $ .
Note:
We can see that the given problem contains a huge amount of calculation so, we need to perform each step carefully to avoid confusion. We should not always consider $ {{\tan }^{-1}}a+{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right) $ , as this is not valid for every value of a and b. Whenever we get the problems involving a sum of inverse tangent terms, we should check the product of the terms present inside the inverse. Similarly, we can expect problem to check the continuity of function at $ x=0 $ and $ x=\dfrac{\pi }{4} $ .
We start solving the problem by recalling the facts that $ 0 < \tan x < 1 $ , for $ 0 < x < \dfrac{\pi }{4} $ and $ 1 < \tan x < \infty $ , for $ \dfrac{\pi }{4} < x < \dfrac{\pi }{2} $ , $ 0 < \cot x < 1 $ , for $ \dfrac{\pi }{4} < x < \dfrac{\pi }{2} $ and \[1 < \cot x < \infty \], for $ 0 < x < \dfrac{\pi }{4} $ . We then consider the interval $ 0 < x < \dfrac{\pi }{4} $ and make use of the results $ {{\tan }^{-1}}a+{{\tan }^{-1}}b=\left\{ \begin{matrix}
{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right);ab < 1 \\
\pi +{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right);ab > 1,a,b > 0 \\
-\pi +{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right);ab > 1,a,b < 0 \\
\end{matrix} \right. $ to proceed through the problem. We then make the necessary calculations and make use of the results $ \cot x=\dfrac{1}{\tan x} $ , $ \tan 2x=\dfrac{2\tan x}{1-{{\tan }^{2}}x} $ and $ {{\tan }^{-1}}\left( -x \right)=-{{\tan }^{-1}}\left( x \right) $ to get the required answer. We follow similar procedure by considering the interval $ \dfrac{\pi }{4} < x < \dfrac{\pi }{2} $ to complete the given result.
Complete step by step answer:
According to the problem, we are asked to prove the given result: $ {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)=\left\{ \begin{matrix}
0,\text{ if }\dfrac{\pi }{4} < x < \dfrac{\pi }{2} \\
\pi ,\text{ if }0 < x < \dfrac{\pi }{4} \\
\end{matrix} \right. $ .
We know that $ 0 < \tan x < 1 $ , for $ 0 < x < \dfrac{\pi }{4} $ and $ 1 < \tan x < \infty $ , for $ \dfrac{\pi }{4} < x < \dfrac{\pi }{2} $ .
Also $ 0 < \cot x < 1 $ , for $ \dfrac{\pi }{4} < x < \dfrac{\pi }{2} $ and \[1 < \cot x < \infty \], for $ 0 < x < \dfrac{\pi }{4} $ .
Let us take the interval $ 0 < x < \dfrac{\pi }{4} $ .
Now, let us consider $ {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right) $ .
We know that $ {{\tan }^{-1}}a+{{\tan }^{-1}}b=\left\{ \begin{matrix}
{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right);ab < 1 \\
\pi +{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right);ab > 1,a,b > 0 \\
-\pi +{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right);ab > 1,a,b < 0 \\
\end{matrix} \right. $ .
So, we have \[1 < \cot x < \infty \], for $ 0 < x < \dfrac{\pi }{4} $ so, we get \[1 < {{\cot }^{3}}x < \infty \], for $ 0 < x < \dfrac{\pi }{4} $ . So, we get $ \left( \cot x \right)\left( {{\cot }^{3}}x \right) > 1 $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+\pi +{{\tan }^{-1}}\left( \dfrac{\cot A+{{\cot }^{3}}A}{1-\left( \cot A \right)\left( {{\cot }^{3}}A \right)} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+\pi +{{\tan }^{-1}}\left( \dfrac{\cot A+{{\cot }^{3}}A}{1-{{\cot }^{4}}A} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+\pi +{{\tan }^{-1}}\left( \dfrac{\cot x\left( 1+{{\cot }^{2}}A \right)}{\left( 1+{{\cot }^{2}}A \right)\left( 1-{{\cot }^{2}}A \right)} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+\pi +{{\tan }^{-1}}\left( \dfrac{\cot A}{1-{{\cot }^{2}}A} \right) $ .
We know that $ \cot x=\dfrac{1}{\tan x} $ and $ \tan 2x=\dfrac{2\tan x}{1-{{\tan }^{2}}x} $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\times \left( \dfrac{2\tan A}{1-{{\tan }^{2}}A} \right) \right)+\pi +{{\tan }^{-1}}\left( \dfrac{\dfrac{1}{\tan A}}{1-\dfrac{1}{{{\tan }^{2}}A}} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{\tan A}{1-{{\tan }^{2}}A} \right)+\pi +{{\tan }^{-1}}\left( \dfrac{\tan A}{{{\tan }^{2}}A-1} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{\tan A}{1-{{\tan }^{2}}A} \right)+\pi +{{\tan }^{-1}}\left( \dfrac{-\tan A}{1-{{\tan }^{2}}A} \right) $ .
We know that $ {{\tan }^{-1}}\left( -x \right)=-{{\tan }^{-1}}\left( x \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{\tan A}{1-{{\tan }^{2}}A} \right)+\pi -{{\tan }^{-1}}\left( \dfrac{\tan A}{1-{{\tan }^{2}}A} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)=\pi $ , for $ 0 < x < \dfrac{\pi }{4} $ ---(1).
Now, let us consider the interval $ \dfrac{\pi }{4} < x < \dfrac{\pi }{2} $ .
So, we have $ 0 < \cot x < 1 $ , for $ 0 < x < \dfrac{\pi }{4} $ so, we get \[0 < {{\cot }^{3}}x < 1\], for $ 0 < x < \dfrac{\pi }{4} $ . So, we get $ \left( \cot x \right)\left( {{\cot }^{3}}x \right) < 1 $ .
We know that $ {{\tan }^{-1}}a+{{\tan }^{-1}}b=\left\{ \begin{matrix}
{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right);ab < 1 \\
\pi +{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right);ab > 1,a,b > 0 \\
-\pi +{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right);ab > 1,a,b < 0 \\
\end{matrix} \right. $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \dfrac{\cot A+{{\cot }^{3}}A}{1-\left( \cot A \right)\left( {{\cot }^{3}}A \right)} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \dfrac{\cot A+{{\cot }^{3}}A}{1-{{\cot }^{4}}A} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \dfrac{\cot x\left( 1+{{\cot }^{2}}A \right)}{\left( 1+{{\cot }^{2}}A \right)\left( 1-{{\cot }^{2}}A \right)} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \dfrac{\cot A}{1-{{\cot }^{2}}A} \right) $ .
We know that $ \cot x=\dfrac{1}{\tan x} $ and $ \tan 2x=\dfrac{2\tan x}{1-{{\tan }^{2}}x} $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{1}{2}\times \left( \dfrac{2\tan A}{1-{{\tan }^{2}}A} \right) \right)+{{\tan }^{-1}}\left( \dfrac{\dfrac{1}{\tan A}}{1-\dfrac{1}{{{\tan }^{2}}A}} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{\tan A}{1-{{\tan }^{2}}A} \right)+{{\tan }^{-1}}\left( \dfrac{\tan A}{{{\tan }^{2}}A-1} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{\tan A}{1-{{\tan }^{2}}A} \right)+{{\tan }^{-1}}\left( \dfrac{-\tan A}{1-{{\tan }^{2}}A} \right) $ .
We know that $ {{\tan }^{-1}}\left( -x \right)=-{{\tan }^{-1}}\left( x \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)={{\tan }^{-1}}\left( \dfrac{\tan A}{1-{{\tan }^{2}}A} \right)-{{\tan }^{-1}}\left( \dfrac{\tan A}{1-{{\tan }^{2}}A} \right) $ .
$ \Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)=0 $ , for $ \dfrac{\pi }{4} < x < \dfrac{\pi }{2} $ ---(2).
From equations (1) and (2), we can see that we have proved the result $ {{\tan }^{-1}}\left( \dfrac{1}{2}\tan 2A \right)+{{\tan }^{-1}}\left( \cot A \right)+{{\tan }^{-1}}\left( {{\cot }^{3}}A \right)=\left\{ \begin{matrix}
0,\text{ if }\dfrac{\pi }{4} < x < \dfrac{\pi }{2} \\
\pi ,\text{ if }0 < x < \dfrac{\pi }{4} \\
\end{matrix} \right. $ .
Note:
We can see that the given problem contains a huge amount of calculation so, we need to perform each step carefully to avoid confusion. We should not always consider $ {{\tan }^{-1}}a+{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right) $ , as this is not valid for every value of a and b. Whenever we get the problems involving a sum of inverse tangent terms, we should check the product of the terms present inside the inverse. Similarly, we can expect problem to check the continuity of function at $ x=0 $ and $ x=\dfrac{\pi }{4} $ .
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

