Prove the following trigonometric equation:
$\dfrac{{{\tan }^{2}}A}{1+{{\tan }^{2}}A}+\dfrac{{{\cot }^{2}}A}{1+{{\cot }^{2}}A}=1$.
Answer
Verified
504.6k+ views
Hint: The given question is related to trigonometric identities. Here use the formulae related to the relation between tangent and cotangent of an angle.
Complete step-by-step answer:
We need to prove that the value of $\dfrac{{{\tan }^{2}}A}{1+{{\tan }^{2}}A}+\dfrac{{{\cot }^{2}}A}{1+{{\cot }^{2}}A}$ is equal to $1$ .
First, we will consider the left-hand side of the equation which is given as $\dfrac{{{\tan }^{2}}A}{1+{{\tan }^{2}}A}+\dfrac{{{\cot }^{2}}A}{1+{{\cot }^{2}}A}$. We will take the LCM of the denominators and solve the fraction to determine the value of the left-hand side of the equation. The LCM of the denominators in the left-hand side of the equation is given as $\left( 1+{{\tan }^{2}}A \right)\left( 1+{{\cot }^{2}}A \right)$ .
So, the left-hand side of the equation becomes \[\dfrac{{{\tan }^{2}}A\left( 1+{{\cot }^{2}}A \right)}{\left( 1+{{\tan }^{2}}A \right)\left( 1+{{\cot }^{2}}A \right)}+\dfrac{{{\cot }^{2}}A\left( 1+{{\tan }^{2}}A \right)}{\left( 1+{{\tan }^{2}}A \right)\left( 1+{{\cot }^{2}}A \right)}\].
$=\dfrac{{{\tan }^{2}}A\left( 1+{{\cot }^{2}}A \right)+{{\cot }^{2}}A\left( 1+{{\tan }^{2}}A \right)}{\left( 1+{{\tan }^{2}}A \right)\left( 1+{{\cot }^{2}}A \right)}$
Now, we will open the brackets and multiply the terms in the denominator. So, we get:
$\dfrac{{{\tan }^{2}}A}{1+{{\tan }^{2}}A}+\dfrac{{{\cot }^{2}}A}{1+{{\cot }^{2}}A}=\dfrac{{{\tan }^{2}}A+{{\tan }^{2}}A{{\cot }^{2}}A+{{\cot }^{2}}A+{{\tan }^{2}}A{{\cot }^{2}}A}{1+{{\tan }^{2}}A+{{\tan }^{2}}A{{\cot }^{2}}A+{{\cot }^{2}}A}....(i)$
Now, we know that $\cot A=\dfrac{1}{\tan A}$ . So, $\cot A\tan A=1$ . Hence, ${{\cot }^{2}}A{{\tan }^{2}}A=1$.
Now, we will substitute ${{\cot }^{2}}A{{\tan }^{2}}A=1$ in equation $(i)$. So, we get: $\dfrac{{{\tan }^{2}}A}{1+{{\tan }^{2}}A}+\dfrac{{{\cot }^{2}}A}{1+{{\cot }^{2}}A}=\dfrac{{{\tan }^{2}}A+1+{{\cot }^{2}}A+1}{1+{{\tan }^{2}}A+{{\cot }^{2}}A+1}$. Clearly, the values of the numerator and the denominator are the same. So, the value of the fraction will be equal to $1$ . So, the value of $\dfrac{{{\tan }^{2}}A}{1+{{\tan }^{2}}A}+\dfrac{{{\cot }^{2}}A}{1+{{\cot }^{2}}A}$ will be equal to $1$, i.e.
$\dfrac{{{\tan }^{2}}A}{1+{{\tan }^{2}}A}+\dfrac{{{\cot }^{2}}A}{1+{{\cot }^{2}}A}=1$.
Hence, the value of the left-hand side of the equation is equal to $1$.
Now, we will consider the right-hand side of the equation. The value of the right-hand side of the equation is also equal to $1$.
LHS=RHS. Hence, proved.
Note: While taking the LCM and multiplying the terms in the denominator, make sure that no sign mistakes are made. They can result in wrong answers. So, such mistakes should be avoided.
Complete step-by-step answer:
We need to prove that the value of $\dfrac{{{\tan }^{2}}A}{1+{{\tan }^{2}}A}+\dfrac{{{\cot }^{2}}A}{1+{{\cot }^{2}}A}$ is equal to $1$ .
First, we will consider the left-hand side of the equation which is given as $\dfrac{{{\tan }^{2}}A}{1+{{\tan }^{2}}A}+\dfrac{{{\cot }^{2}}A}{1+{{\cot }^{2}}A}$. We will take the LCM of the denominators and solve the fraction to determine the value of the left-hand side of the equation. The LCM of the denominators in the left-hand side of the equation is given as $\left( 1+{{\tan }^{2}}A \right)\left( 1+{{\cot }^{2}}A \right)$ .
So, the left-hand side of the equation becomes \[\dfrac{{{\tan }^{2}}A\left( 1+{{\cot }^{2}}A \right)}{\left( 1+{{\tan }^{2}}A \right)\left( 1+{{\cot }^{2}}A \right)}+\dfrac{{{\cot }^{2}}A\left( 1+{{\tan }^{2}}A \right)}{\left( 1+{{\tan }^{2}}A \right)\left( 1+{{\cot }^{2}}A \right)}\].
$=\dfrac{{{\tan }^{2}}A\left( 1+{{\cot }^{2}}A \right)+{{\cot }^{2}}A\left( 1+{{\tan }^{2}}A \right)}{\left( 1+{{\tan }^{2}}A \right)\left( 1+{{\cot }^{2}}A \right)}$
Now, we will open the brackets and multiply the terms in the denominator. So, we get:
$\dfrac{{{\tan }^{2}}A}{1+{{\tan }^{2}}A}+\dfrac{{{\cot }^{2}}A}{1+{{\cot }^{2}}A}=\dfrac{{{\tan }^{2}}A+{{\tan }^{2}}A{{\cot }^{2}}A+{{\cot }^{2}}A+{{\tan }^{2}}A{{\cot }^{2}}A}{1+{{\tan }^{2}}A+{{\tan }^{2}}A{{\cot }^{2}}A+{{\cot }^{2}}A}....(i)$
Now, we know that $\cot A=\dfrac{1}{\tan A}$ . So, $\cot A\tan A=1$ . Hence, ${{\cot }^{2}}A{{\tan }^{2}}A=1$.
Now, we will substitute ${{\cot }^{2}}A{{\tan }^{2}}A=1$ in equation $(i)$. So, we get: $\dfrac{{{\tan }^{2}}A}{1+{{\tan }^{2}}A}+\dfrac{{{\cot }^{2}}A}{1+{{\cot }^{2}}A}=\dfrac{{{\tan }^{2}}A+1+{{\cot }^{2}}A+1}{1+{{\tan }^{2}}A+{{\cot }^{2}}A+1}$. Clearly, the values of the numerator and the denominator are the same. So, the value of the fraction will be equal to $1$ . So, the value of $\dfrac{{{\tan }^{2}}A}{1+{{\tan }^{2}}A}+\dfrac{{{\cot }^{2}}A}{1+{{\cot }^{2}}A}$ will be equal to $1$, i.e.
$\dfrac{{{\tan }^{2}}A}{1+{{\tan }^{2}}A}+\dfrac{{{\cot }^{2}}A}{1+{{\cot }^{2}}A}=1$.
Hence, the value of the left-hand side of the equation is equal to $1$.
Now, we will consider the right-hand side of the equation. The value of the right-hand side of the equation is also equal to $1$.
LHS=RHS. Hence, proved.
Note: While taking the LCM and multiplying the terms in the denominator, make sure that no sign mistakes are made. They can result in wrong answers. So, such mistakes should be avoided.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Economics: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Class 12 Question and Answer - Your Ultimate Solutions Guide
Trending doubts
10 examples of friction in our daily life
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Pigmented layer in the eye is called as a Cornea b class 11 biology CBSE
State the laws of reflection of light