Prove the following trigonometric equation :
${{\text{sin}}^2}{\text{A = co}}{{\text{s}}^2}({\text{A - B}}) + {\cos ^2}{\text{B}} - 2\cos ({\text{A - B}})\cos {\text{AcosB}}$
Answer
Verified
505.8k+ views
Hint: In order to solve such types of problems, we must keep one thing in our mind that how can we arrange the terms so that we can apply available trigonometric formulas then expression will automatically start to get reduced.
Complete step-by-step answer:
$ \Rightarrow {\text{si}}{{\text{n}}^2}{\text{A = co}}{{\text{s}}^2}({\text{A - B}}) + {\cos ^2}{\text{B}} - 2\cos ({\text{A - B}})\cos {\text{AcosB}}$
On writing ${\text{co}}{{\text{s}}^2}{\text{B}}$ term first in RHS as shown below, because through such type rearrangement we can proceed to solve by taking ${\text{cos}}({\text{A - B}})$ term common
$ \Rightarrow {\text{RHS = co}}{{\text{s}}^2}({\text{A - B}}) + {\cos ^2}{\text{B}} - 2\cos ({\text{A - B}})\cos {\text{AcosB}}$
On taking ${\text{cos}}({\text{A - B}})$ term common,
$ \Rightarrow {\text{ }}{\cos ^2}{\text{B + cos}}({\text{A - B}})\left( {(\cos ({\text{A - B}}) - 2\cos {\text{AcosB)}}} \right)$ --- (1)
We know that.
\[ \Rightarrow {\text{ cos}}({\text{A - B}}) = {\text{ cosAcosB + sinAsinB}}\]
So on putting the value of ${\text{cos}}({\text{A - B}})$ in expression (1)
$ \Rightarrow {\cos ^2}B{\text{ + cos}}({\text{A - B}})\left( {(\cos {\text{AcosB + sinAsinB}} - 2\cos {\text{AcosB)}}} \right)$
On subtracting ${\text{cos}}({\text{A)cos (B)}}$ term we get
$ \Rightarrow {\cos ^2}B{\text{ + cos}}({\text{A - B}})\left( {({\text{sinAsinB}} - \cos {\text{AcosB)}}} \right)$
On rearranging minus sign, try to make any formula of cos
$ \Rightarrow {\cos ^2}B{\text{ + cos}}({\text{A - B}})\left( {( - \cos {\text{AcosB + sinAsinB)}}} \right)$
On taking minus sign common from 2nd bracket
$ \Rightarrow {\cos ^2}B{\text{ + cos}}({\text{A - B}})\left( { - (\cos {\text{AcosB - sinAsinB)}}} \right)$
We can take this minus sign out from 2nd bracket
$ \Rightarrow {\cos ^2}B{\text{ - cos}}({\text{A - B}})\left( {\cos {\text{AcosB - sinAsinB}}} \right)$ --- (2)
We know the formula of ${\text{cos}}({\text{A + B}})$ so here we can use that
\[ {\text{ cos}}({\text{A + B}}) = {\text{ cosAcosB - sinAsinB}}\]
So using the formula of ${\text{cos}}({\text{A + B}})$ in expression (2)
$ \Rightarrow {\cos ^2}B{\text{ - cos}}(A - B)(\cos ({\text{A + B}}){\text{)}}$ --- (3)
We know that.
\[ {\text{ cos}}({\text{A - B}}) = {\text{ cosAcosB + sinAsinB}}\]
\[ {\text{ cos}}({\text{A + B}}) = {\text{ cosAcosB - sinAsinB}}\]
On using above results of ${\text{cos}}({\text{A - B}}){\text{ & cos}}({\text{A - B}})$ in expression (3)
$ \Rightarrow {\cos ^2}B{\text{ - }}\left( {{\text{(cosAcosB + sinAsinB)}}(\cos {\text{AcosB - sinAsinB)}}} \right)$
In algebra, there is a formula known as the Difference of two squares:$({{\text{m}}^2}{\text{ - }}{{\text{n}}^2}) = ({\text{m + n}})({\text{m - n}})$
Here, ${\text{m = cosAcosB}}$ ${\text{ & n = sinAsinB}}$
So on using Difference of two squares formula
$ \Rightarrow {\cos ^2}B{\text{ - }}\left( {{\text{(co}}{{\text{s}}^{^2}}{\text{Aco}}{{\text{s}}^2}{\text{B - si}}{{\text{n}}^2}{\text{Asi}}{{\text{n}}^2}{\text{B}}} \right)$
On further solving
\[ \Rightarrow {\cos ^2}B{\text{ - co}}{{\text{s}}^{^2}}{\text{Aco}}{{\text{s}}^2}{\text{B + si}}{{\text{n}}^2}{\text{Asi}}{{\text{n}}^2}{\text{B}}\]
On taking the ${\text{co}}{{\text{s}}^2}({\text{B}})$ term common
\[ \Rightarrow {\cos ^2}B{\text{ (1 - co}}{{\text{s}}^{^2}}{\text{A) + si}}{{\text{n}}^2}{\text{Asi}}{{\text{n}}^2}{\text{B}}\]
We know the formula of ${\text{si}}{{\text{n}}^2}{\text{A + co}}{{\text{s}}^2}{\text{A = 1 }}$ so here we can use
\[{\text{ (1 - co}}{{\text{s}}^{^2}}{\text{A) = si}}{{\text{n}}^2}{\text{A}}\] in above expression
\[ \Rightarrow {\cos ^2}B{\text{ (si}}{{\text{n}}^{^2}}{\text{A) + si}}{{\text{n}}^2}{\text{Asi}}{{\text{n}}^2}{\text{B}}\]
On taking the ${\sin ^2}({\text{A}})$ term common
\[ \Rightarrow {\text{(si}}{{\text{n}}^{^2}}{\text{A) }}\left( {{{\cos }^2}B{\text{ + si}}{{\text{n}}^2}{\text{B}}} \right)\]
Again using ${\text{si}}{{\text{n}}^2}{\text{B + co}}{{\text{s}}^2}{\text{B = 1 }}$
\[ \Rightarrow {\text{(si}}{{\text{n}}^{^2}}{\text{A) }} \times \left( 1 \right)\]
\[ \Rightarrow {\text{si}}{{\text{n}}^{^2}}{\text{A = LHS}}\]
Note: Whenever we face such a type of problem always remember the trigonometry identities which are written above then simplify the given statements using these identities. we will get the required answer.
Complete step-by-step answer:
$ \Rightarrow {\text{si}}{{\text{n}}^2}{\text{A = co}}{{\text{s}}^2}({\text{A - B}}) + {\cos ^2}{\text{B}} - 2\cos ({\text{A - B}})\cos {\text{AcosB}}$
On writing ${\text{co}}{{\text{s}}^2}{\text{B}}$ term first in RHS as shown below, because through such type rearrangement we can proceed to solve by taking ${\text{cos}}({\text{A - B}})$ term common
$ \Rightarrow {\text{RHS = co}}{{\text{s}}^2}({\text{A - B}}) + {\cos ^2}{\text{B}} - 2\cos ({\text{A - B}})\cos {\text{AcosB}}$
On taking ${\text{cos}}({\text{A - B}})$ term common,
$ \Rightarrow {\text{ }}{\cos ^2}{\text{B + cos}}({\text{A - B}})\left( {(\cos ({\text{A - B}}) - 2\cos {\text{AcosB)}}} \right)$ --- (1)
We know that.
\[ \Rightarrow {\text{ cos}}({\text{A - B}}) = {\text{ cosAcosB + sinAsinB}}\]
So on putting the value of ${\text{cos}}({\text{A - B}})$ in expression (1)
$ \Rightarrow {\cos ^2}B{\text{ + cos}}({\text{A - B}})\left( {(\cos {\text{AcosB + sinAsinB}} - 2\cos {\text{AcosB)}}} \right)$
On subtracting ${\text{cos}}({\text{A)cos (B)}}$ term we get
$ \Rightarrow {\cos ^2}B{\text{ + cos}}({\text{A - B}})\left( {({\text{sinAsinB}} - \cos {\text{AcosB)}}} \right)$
On rearranging minus sign, try to make any formula of cos
$ \Rightarrow {\cos ^2}B{\text{ + cos}}({\text{A - B}})\left( {( - \cos {\text{AcosB + sinAsinB)}}} \right)$
On taking minus sign common from 2nd bracket
$ \Rightarrow {\cos ^2}B{\text{ + cos}}({\text{A - B}})\left( { - (\cos {\text{AcosB - sinAsinB)}}} \right)$
We can take this minus sign out from 2nd bracket
$ \Rightarrow {\cos ^2}B{\text{ - cos}}({\text{A - B}})\left( {\cos {\text{AcosB - sinAsinB}}} \right)$ --- (2)
We know the formula of ${\text{cos}}({\text{A + B}})$ so here we can use that
\[ {\text{ cos}}({\text{A + B}}) = {\text{ cosAcosB - sinAsinB}}\]
So using the formula of ${\text{cos}}({\text{A + B}})$ in expression (2)
$ \Rightarrow {\cos ^2}B{\text{ - cos}}(A - B)(\cos ({\text{A + B}}){\text{)}}$ --- (3)
We know that.
\[ {\text{ cos}}({\text{A - B}}) = {\text{ cosAcosB + sinAsinB}}\]
\[ {\text{ cos}}({\text{A + B}}) = {\text{ cosAcosB - sinAsinB}}\]
On using above results of ${\text{cos}}({\text{A - B}}){\text{ & cos}}({\text{A - B}})$ in expression (3)
$ \Rightarrow {\cos ^2}B{\text{ - }}\left( {{\text{(cosAcosB + sinAsinB)}}(\cos {\text{AcosB - sinAsinB)}}} \right)$
In algebra, there is a formula known as the Difference of two squares:$({{\text{m}}^2}{\text{ - }}{{\text{n}}^2}) = ({\text{m + n}})({\text{m - n}})$
Here, ${\text{m = cosAcosB}}$ ${\text{ & n = sinAsinB}}$
So on using Difference of two squares formula
$ \Rightarrow {\cos ^2}B{\text{ - }}\left( {{\text{(co}}{{\text{s}}^{^2}}{\text{Aco}}{{\text{s}}^2}{\text{B - si}}{{\text{n}}^2}{\text{Asi}}{{\text{n}}^2}{\text{B}}} \right)$
On further solving
\[ \Rightarrow {\cos ^2}B{\text{ - co}}{{\text{s}}^{^2}}{\text{Aco}}{{\text{s}}^2}{\text{B + si}}{{\text{n}}^2}{\text{Asi}}{{\text{n}}^2}{\text{B}}\]
On taking the ${\text{co}}{{\text{s}}^2}({\text{B}})$ term common
\[ \Rightarrow {\cos ^2}B{\text{ (1 - co}}{{\text{s}}^{^2}}{\text{A) + si}}{{\text{n}}^2}{\text{Asi}}{{\text{n}}^2}{\text{B}}\]
We know the formula of ${\text{si}}{{\text{n}}^2}{\text{A + co}}{{\text{s}}^2}{\text{A = 1 }}$ so here we can use
\[{\text{ (1 - co}}{{\text{s}}^{^2}}{\text{A) = si}}{{\text{n}}^2}{\text{A}}\] in above expression
\[ \Rightarrow {\cos ^2}B{\text{ (si}}{{\text{n}}^{^2}}{\text{A) + si}}{{\text{n}}^2}{\text{Asi}}{{\text{n}}^2}{\text{B}}\]
On taking the ${\sin ^2}({\text{A}})$ term common
\[ \Rightarrow {\text{(si}}{{\text{n}}^{^2}}{\text{A) }}\left( {{{\cos }^2}B{\text{ + si}}{{\text{n}}^2}{\text{B}}} \right)\]
Again using ${\text{si}}{{\text{n}}^2}{\text{B + co}}{{\text{s}}^2}{\text{B = 1 }}$
\[ \Rightarrow {\text{(si}}{{\text{n}}^{^2}}{\text{A) }} \times \left( 1 \right)\]
\[ \Rightarrow {\text{si}}{{\text{n}}^{^2}}{\text{A = LHS}}\]
Note: Whenever we face such a type of problem always remember the trigonometry identities which are written above then simplify the given statements using these identities. we will get the required answer.
Recently Updated Pages
How to find how many moles are in an ion I am given class 11 chemistry CBSE
Class 11 Question and Answer - Your Ultimate Solutions Guide
Identify how many lines of symmetry drawn are there class 8 maths CBSE
State true or false If two lines intersect and if one class 8 maths CBSE
Tina had 20m 5cm long cloth She cuts 4m 50cm lengt-class-8-maths-CBSE
Which sentence is punctuated correctly A Always ask class 8 english CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
What organs are located on the left side of your body class 11 biology CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
Petromyzon belongs to class A Osteichthyes B Chondrichthyes class 11 biology CBSE
Comparative account of the alimentary canal and digestive class 11 biology CBSE