
Prove the given result: \[\sin {{15}^{\circ }}=\dfrac{\sqrt{3}-1}{2\sqrt{2}}\].
Answer
565.2k+ views
Hint: We start solving the problem by considering the L.H.S (Left hand side) of the given result. We then write $ {{15}^{\circ }} $ as $ \left( {{45}^{\circ }}-{{30}^{\circ }} \right) $ and make use of the result $ \sin \left( A-B \right)=\sin A\cos B-\cos A\sin B $ to proceed through the problem. We then make use of the results $ \sin {{45}^{\circ }}=\dfrac{1}{\sqrt{2}} $ , $ \cos {{45}^{\circ }}=\dfrac{1}{\sqrt{2}} $ , $ \sin {{30}^{\circ }}=\dfrac{1}{2} $ and $ \cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2} $ to proceed further through the problem. We then make the necessary calculations to complete the proof of given result.
Complete step by step answer:
According to the problem, we are asked to prove the given result \[\sin {{15}^{\circ }}=\dfrac{\sqrt{3}-1}{2\sqrt{2}}\].
Let us consider L.H.S (Left hand side) of the given result.
So, we have \[\sin {{15}^{\circ }}\].
$ \Rightarrow \sin {{15}^{\circ }}=\sin \left( {{45}^{\circ }}-{{30}^{\circ }} \right) $ ---(1).
We know that $ \sin \left( A-B \right)=\sin A\cos B-\cos A\sin B $ . Let us use this result in equation (1).
$ \Rightarrow \sin {{15}^{\circ }}=\sin {{45}^{\circ }}\cos {{30}^{\circ }}-\cos {{45}^{\circ }}\sin {{30}^{\circ }} $ ---(2).
We know that $ \sin {{45}^{\circ }}=\dfrac{1}{\sqrt{2}} $ , $ \cos {{45}^{\circ }}=\dfrac{1}{\sqrt{2}} $ , $ \sin {{30}^{\circ }}=\dfrac{1}{2} $ and $ \cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2} $ . Let us use this results in equation (2).
$ \Rightarrow \sin {{15}^{\circ }}=\left( \dfrac{1}{\sqrt{2}} \right)\left( \dfrac{\sqrt{3}}{2} \right)-\left( \dfrac{1}{\sqrt{2}} \right)\left( \dfrac{1}{2} \right) $ .
$ \Rightarrow \sin {{15}^{\circ }}=\left( \dfrac{\sqrt{3}}{2\sqrt{2}} \right)-\left( \dfrac{1}{2\sqrt{2}} \right) $ .
$ \Rightarrow \sin {{15}^{\circ }}=\dfrac{\sqrt{3}-1}{2\sqrt{2}} $ .
We can see that the L.H.S (Left Hand Side) of the given result is equal to the R.H.S (Right Hand Side) of it, which means that we have proved the given result.
$ \therefore $ We have proved that the value of $ \sin {{15}^{\circ }} $ as $ \dfrac{\sqrt{3}-1}{2\sqrt{2}} $ .
Note:
We can also prove the given result of the problem as shown below:
We know that $ \cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2} $ .
$ \Rightarrow \cos \left( 2\left( {{15}^{\circ }} \right) \right)=\dfrac{\sqrt{3}}{2} $ ---(3).
We know that $ \cos 2A=1-2{{\sin }^{2}}A $ . Let us use this result in equation (3).
$ \Rightarrow 1-2{{\sin }^{2}}\left( {{15}^{\circ }} \right)=\dfrac{\sqrt{3}}{2} $ .
$ \Rightarrow 1-\dfrac{\sqrt{3}}{2}=2{{\sin }^{2}}\left( {{15}^{\circ }} \right) $ .
$ \Rightarrow 2{{\sin }^{2}}\left( {{15}^{\circ }} \right)=\dfrac{3}{4}+\dfrac{1}{4}-2\left( \dfrac{\sqrt{3}}{2} \right)\left( \dfrac{1}{2} \right) $ .
\[\Rightarrow 2{{\sin }^{2}}\left( {{15}^{\circ }} \right)={{\left( \dfrac{\sqrt{3}}{2} \right)}^{2}}+{{\left( \dfrac{1}{2} \right)}^{2}}-2\left( \dfrac{\sqrt{3}}{2} \right)\left( \dfrac{1}{2} \right)\] ---(6).
We can see that the R.H.S (Right hand side) of the equation (6) resembles $ {{a}^{2}}+{{b}^{2}}-2ab $ which is equal to $ {{\left( a-b \right)}^{2}} $ .
\[\Rightarrow 2{{\sin }^{2}}\left( {{15}^{\circ }} \right)={{\left( \dfrac{\sqrt{3}}{2}-\dfrac{1}{2} \right)}^{2}}\].
\[\Rightarrow 2{{\sin }^{2}}\left( {{15}^{\circ }} \right)={{\left( \dfrac{\sqrt{3}-1}{2} \right)}^{2}}\].
\[\Rightarrow {{\sin }^{2}}\left( {{15}^{\circ }} \right)=\dfrac{1}{2}\times {{\left( \dfrac{\sqrt{3}-1}{2} \right)}^{2}}\].
\[\Rightarrow \sin \left( {{15}^{\circ }} \right)=\sqrt{\dfrac{1}{2}\times {{\left( \dfrac{\sqrt{3}-1}{2} \right)}^{2}}}\].
\[\Rightarrow \sin \left( {{15}^{\circ }} \right)=\dfrac{1}{\sqrt{2}}\times \left( \dfrac{\sqrt{3}-1}{2} \right)\].
\[\Rightarrow \sin \left( {{15}^{\circ }} \right)=\dfrac{\sqrt{3}-1}{2\sqrt{2}}\], which is the given result.
Complete step by step answer:
According to the problem, we are asked to prove the given result \[\sin {{15}^{\circ }}=\dfrac{\sqrt{3}-1}{2\sqrt{2}}\].
Let us consider L.H.S (Left hand side) of the given result.
So, we have \[\sin {{15}^{\circ }}\].
$ \Rightarrow \sin {{15}^{\circ }}=\sin \left( {{45}^{\circ }}-{{30}^{\circ }} \right) $ ---(1).
We know that $ \sin \left( A-B \right)=\sin A\cos B-\cos A\sin B $ . Let us use this result in equation (1).
$ \Rightarrow \sin {{15}^{\circ }}=\sin {{45}^{\circ }}\cos {{30}^{\circ }}-\cos {{45}^{\circ }}\sin {{30}^{\circ }} $ ---(2).
We know that $ \sin {{45}^{\circ }}=\dfrac{1}{\sqrt{2}} $ , $ \cos {{45}^{\circ }}=\dfrac{1}{\sqrt{2}} $ , $ \sin {{30}^{\circ }}=\dfrac{1}{2} $ and $ \cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2} $ . Let us use this results in equation (2).
$ \Rightarrow \sin {{15}^{\circ }}=\left( \dfrac{1}{\sqrt{2}} \right)\left( \dfrac{\sqrt{3}}{2} \right)-\left( \dfrac{1}{\sqrt{2}} \right)\left( \dfrac{1}{2} \right) $ .
$ \Rightarrow \sin {{15}^{\circ }}=\left( \dfrac{\sqrt{3}}{2\sqrt{2}} \right)-\left( \dfrac{1}{2\sqrt{2}} \right) $ .
$ \Rightarrow \sin {{15}^{\circ }}=\dfrac{\sqrt{3}-1}{2\sqrt{2}} $ .
We can see that the L.H.S (Left Hand Side) of the given result is equal to the R.H.S (Right Hand Side) of it, which means that we have proved the given result.
$ \therefore $ We have proved that the value of $ \sin {{15}^{\circ }} $ as $ \dfrac{\sqrt{3}-1}{2\sqrt{2}} $ .
Note:
We can also prove the given result of the problem as shown below:
We know that $ \cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2} $ .
$ \Rightarrow \cos \left( 2\left( {{15}^{\circ }} \right) \right)=\dfrac{\sqrt{3}}{2} $ ---(3).
We know that $ \cos 2A=1-2{{\sin }^{2}}A $ . Let us use this result in equation (3).
$ \Rightarrow 1-2{{\sin }^{2}}\left( {{15}^{\circ }} \right)=\dfrac{\sqrt{3}}{2} $ .
$ \Rightarrow 1-\dfrac{\sqrt{3}}{2}=2{{\sin }^{2}}\left( {{15}^{\circ }} \right) $ .
$ \Rightarrow 2{{\sin }^{2}}\left( {{15}^{\circ }} \right)=\dfrac{3}{4}+\dfrac{1}{4}-2\left( \dfrac{\sqrt{3}}{2} \right)\left( \dfrac{1}{2} \right) $ .
\[\Rightarrow 2{{\sin }^{2}}\left( {{15}^{\circ }} \right)={{\left( \dfrac{\sqrt{3}}{2} \right)}^{2}}+{{\left( \dfrac{1}{2} \right)}^{2}}-2\left( \dfrac{\sqrt{3}}{2} \right)\left( \dfrac{1}{2} \right)\] ---(6).
We can see that the R.H.S (Right hand side) of the equation (6) resembles $ {{a}^{2}}+{{b}^{2}}-2ab $ which is equal to $ {{\left( a-b \right)}^{2}} $ .
\[\Rightarrow 2{{\sin }^{2}}\left( {{15}^{\circ }} \right)={{\left( \dfrac{\sqrt{3}}{2}-\dfrac{1}{2} \right)}^{2}}\].
\[\Rightarrow 2{{\sin }^{2}}\left( {{15}^{\circ }} \right)={{\left( \dfrac{\sqrt{3}-1}{2} \right)}^{2}}\].
\[\Rightarrow {{\sin }^{2}}\left( {{15}^{\circ }} \right)=\dfrac{1}{2}\times {{\left( \dfrac{\sqrt{3}-1}{2} \right)}^{2}}\].
\[\Rightarrow \sin \left( {{15}^{\circ }} \right)=\sqrt{\dfrac{1}{2}\times {{\left( \dfrac{\sqrt{3}-1}{2} \right)}^{2}}}\].
\[\Rightarrow \sin \left( {{15}^{\circ }} \right)=\dfrac{1}{\sqrt{2}}\times \left( \dfrac{\sqrt{3}-1}{2} \right)\].
\[\Rightarrow \sin \left( {{15}^{\circ }} \right)=\dfrac{\sqrt{3}-1}{2\sqrt{2}}\], which is the given result.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

