Answer
Verified
443.1k+ views
Hint: We start solving the problem by considering the L.H.S (Left hand side) of the given result. We then write $ {{15}^{\circ }} $ as $ \left( {{45}^{\circ }}-{{30}^{\circ }} \right) $ and make use of the result $ \sin \left( A-B \right)=\sin A\cos B-\cos A\sin B $ to proceed through the problem. We then make use of the results $ \sin {{45}^{\circ }}=\dfrac{1}{\sqrt{2}} $ , $ \cos {{45}^{\circ }}=\dfrac{1}{\sqrt{2}} $ , $ \sin {{30}^{\circ }}=\dfrac{1}{2} $ and $ \cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2} $ to proceed further through the problem. We then make the necessary calculations to complete the proof of given result.
Complete step by step answer:
According to the problem, we are asked to prove the given result \[\sin {{15}^{\circ }}=\dfrac{\sqrt{3}-1}{2\sqrt{2}}\].
Let us consider L.H.S (Left hand side) of the given result.
So, we have \[\sin {{15}^{\circ }}\].
$ \Rightarrow \sin {{15}^{\circ }}=\sin \left( {{45}^{\circ }}-{{30}^{\circ }} \right) $ ---(1).
We know that $ \sin \left( A-B \right)=\sin A\cos B-\cos A\sin B $ . Let us use this result in equation (1).
$ \Rightarrow \sin {{15}^{\circ }}=\sin {{45}^{\circ }}\cos {{30}^{\circ }}-\cos {{45}^{\circ }}\sin {{30}^{\circ }} $ ---(2).
We know that $ \sin {{45}^{\circ }}=\dfrac{1}{\sqrt{2}} $ , $ \cos {{45}^{\circ }}=\dfrac{1}{\sqrt{2}} $ , $ \sin {{30}^{\circ }}=\dfrac{1}{2} $ and $ \cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2} $ . Let us use this results in equation (2).
$ \Rightarrow \sin {{15}^{\circ }}=\left( \dfrac{1}{\sqrt{2}} \right)\left( \dfrac{\sqrt{3}}{2} \right)-\left( \dfrac{1}{\sqrt{2}} \right)\left( \dfrac{1}{2} \right) $ .
$ \Rightarrow \sin {{15}^{\circ }}=\left( \dfrac{\sqrt{3}}{2\sqrt{2}} \right)-\left( \dfrac{1}{2\sqrt{2}} \right) $ .
$ \Rightarrow \sin {{15}^{\circ }}=\dfrac{\sqrt{3}-1}{2\sqrt{2}} $ .
We can see that the L.H.S (Left Hand Side) of the given result is equal to the R.H.S (Right Hand Side) of it, which means that we have proved the given result.
$ \therefore $ We have proved that the value of $ \sin {{15}^{\circ }} $ as $ \dfrac{\sqrt{3}-1}{2\sqrt{2}} $ .
Note:
We can also prove the given result of the problem as shown below:
We know that $ \cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2} $ .
$ \Rightarrow \cos \left( 2\left( {{15}^{\circ }} \right) \right)=\dfrac{\sqrt{3}}{2} $ ---(3).
We know that $ \cos 2A=1-2{{\sin }^{2}}A $ . Let us use this result in equation (3).
$ \Rightarrow 1-2{{\sin }^{2}}\left( {{15}^{\circ }} \right)=\dfrac{\sqrt{3}}{2} $ .
$ \Rightarrow 1-\dfrac{\sqrt{3}}{2}=2{{\sin }^{2}}\left( {{15}^{\circ }} \right) $ .
$ \Rightarrow 2{{\sin }^{2}}\left( {{15}^{\circ }} \right)=\dfrac{3}{4}+\dfrac{1}{4}-2\left( \dfrac{\sqrt{3}}{2} \right)\left( \dfrac{1}{2} \right) $ .
\[\Rightarrow 2{{\sin }^{2}}\left( {{15}^{\circ }} \right)={{\left( \dfrac{\sqrt{3}}{2} \right)}^{2}}+{{\left( \dfrac{1}{2} \right)}^{2}}-2\left( \dfrac{\sqrt{3}}{2} \right)\left( \dfrac{1}{2} \right)\] ---(6).
We can see that the R.H.S (Right hand side) of the equation (6) resembles $ {{a}^{2}}+{{b}^{2}}-2ab $ which is equal to $ {{\left( a-b \right)}^{2}} $ .
\[\Rightarrow 2{{\sin }^{2}}\left( {{15}^{\circ }} \right)={{\left( \dfrac{\sqrt{3}}{2}-\dfrac{1}{2} \right)}^{2}}\].
\[\Rightarrow 2{{\sin }^{2}}\left( {{15}^{\circ }} \right)={{\left( \dfrac{\sqrt{3}-1}{2} \right)}^{2}}\].
\[\Rightarrow {{\sin }^{2}}\left( {{15}^{\circ }} \right)=\dfrac{1}{2}\times {{\left( \dfrac{\sqrt{3}-1}{2} \right)}^{2}}\].
\[\Rightarrow \sin \left( {{15}^{\circ }} \right)=\sqrt{\dfrac{1}{2}\times {{\left( \dfrac{\sqrt{3}-1}{2} \right)}^{2}}}\].
\[\Rightarrow \sin \left( {{15}^{\circ }} \right)=\dfrac{1}{\sqrt{2}}\times \left( \dfrac{\sqrt{3}-1}{2} \right)\].
\[\Rightarrow \sin \left( {{15}^{\circ }} \right)=\dfrac{\sqrt{3}-1}{2\sqrt{2}}\], which is the given result.
Complete step by step answer:
According to the problem, we are asked to prove the given result \[\sin {{15}^{\circ }}=\dfrac{\sqrt{3}-1}{2\sqrt{2}}\].
Let us consider L.H.S (Left hand side) of the given result.
So, we have \[\sin {{15}^{\circ }}\].
$ \Rightarrow \sin {{15}^{\circ }}=\sin \left( {{45}^{\circ }}-{{30}^{\circ }} \right) $ ---(1).
We know that $ \sin \left( A-B \right)=\sin A\cos B-\cos A\sin B $ . Let us use this result in equation (1).
$ \Rightarrow \sin {{15}^{\circ }}=\sin {{45}^{\circ }}\cos {{30}^{\circ }}-\cos {{45}^{\circ }}\sin {{30}^{\circ }} $ ---(2).
We know that $ \sin {{45}^{\circ }}=\dfrac{1}{\sqrt{2}} $ , $ \cos {{45}^{\circ }}=\dfrac{1}{\sqrt{2}} $ , $ \sin {{30}^{\circ }}=\dfrac{1}{2} $ and $ \cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2} $ . Let us use this results in equation (2).
$ \Rightarrow \sin {{15}^{\circ }}=\left( \dfrac{1}{\sqrt{2}} \right)\left( \dfrac{\sqrt{3}}{2} \right)-\left( \dfrac{1}{\sqrt{2}} \right)\left( \dfrac{1}{2} \right) $ .
$ \Rightarrow \sin {{15}^{\circ }}=\left( \dfrac{\sqrt{3}}{2\sqrt{2}} \right)-\left( \dfrac{1}{2\sqrt{2}} \right) $ .
$ \Rightarrow \sin {{15}^{\circ }}=\dfrac{\sqrt{3}-1}{2\sqrt{2}} $ .
We can see that the L.H.S (Left Hand Side) of the given result is equal to the R.H.S (Right Hand Side) of it, which means that we have proved the given result.
$ \therefore $ We have proved that the value of $ \sin {{15}^{\circ }} $ as $ \dfrac{\sqrt{3}-1}{2\sqrt{2}} $ .
Note:
We can also prove the given result of the problem as shown below:
We know that $ \cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2} $ .
$ \Rightarrow \cos \left( 2\left( {{15}^{\circ }} \right) \right)=\dfrac{\sqrt{3}}{2} $ ---(3).
We know that $ \cos 2A=1-2{{\sin }^{2}}A $ . Let us use this result in equation (3).
$ \Rightarrow 1-2{{\sin }^{2}}\left( {{15}^{\circ }} \right)=\dfrac{\sqrt{3}}{2} $ .
$ \Rightarrow 1-\dfrac{\sqrt{3}}{2}=2{{\sin }^{2}}\left( {{15}^{\circ }} \right) $ .
$ \Rightarrow 2{{\sin }^{2}}\left( {{15}^{\circ }} \right)=\dfrac{3}{4}+\dfrac{1}{4}-2\left( \dfrac{\sqrt{3}}{2} \right)\left( \dfrac{1}{2} \right) $ .
\[\Rightarrow 2{{\sin }^{2}}\left( {{15}^{\circ }} \right)={{\left( \dfrac{\sqrt{3}}{2} \right)}^{2}}+{{\left( \dfrac{1}{2} \right)}^{2}}-2\left( \dfrac{\sqrt{3}}{2} \right)\left( \dfrac{1}{2} \right)\] ---(6).
We can see that the R.H.S (Right hand side) of the equation (6) resembles $ {{a}^{2}}+{{b}^{2}}-2ab $ which is equal to $ {{\left( a-b \right)}^{2}} $ .
\[\Rightarrow 2{{\sin }^{2}}\left( {{15}^{\circ }} \right)={{\left( \dfrac{\sqrt{3}}{2}-\dfrac{1}{2} \right)}^{2}}\].
\[\Rightarrow 2{{\sin }^{2}}\left( {{15}^{\circ }} \right)={{\left( \dfrac{\sqrt{3}-1}{2} \right)}^{2}}\].
\[\Rightarrow {{\sin }^{2}}\left( {{15}^{\circ }} \right)=\dfrac{1}{2}\times {{\left( \dfrac{\sqrt{3}-1}{2} \right)}^{2}}\].
\[\Rightarrow \sin \left( {{15}^{\circ }} \right)=\sqrt{\dfrac{1}{2}\times {{\left( \dfrac{\sqrt{3}-1}{2} \right)}^{2}}}\].
\[\Rightarrow \sin \left( {{15}^{\circ }} \right)=\dfrac{1}{\sqrt{2}}\times \left( \dfrac{\sqrt{3}-1}{2} \right)\].
\[\Rightarrow \sin \left( {{15}^{\circ }} \right)=\dfrac{\sqrt{3}-1}{2\sqrt{2}}\], which is the given result.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE