Answer
Verified
441.3k+ views
Hint:
We start solving the problem by considering the L.H.S (Left Hand side) of the given equation. We then make use of the result $ \sin \left( {{90}^{\circ }}-\alpha \right)=\cos \alpha $ to proceed through the problem. We then make use of the result $ \cos A-\cos B=-2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right) $ to proceed through further through the problem. We then make the necessary calculations and make use of the results $ \sin \left( -x \right)=-\sin x $ , $ \sin \left( {{90}^{\circ }}-\alpha \right)=\cos \alpha $ to complete the proof of given result.
Complete step by step answer:
According to the problem, we are asked to prove the given result: $ \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=\sqrt{3}.\cos {{80}^{\circ }} $ .
Let us consider L.H.S (Left Hand side) of the given result i.e., $ \sin {{40}^{\circ }}-\cos {{70}^{\circ }} $ .
\[\Rightarrow \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=\sin \left( {{90}^{\circ }}-{{50}^{\circ }} \right)-\cos {{70}^{\circ }}\] ---(1).
We know that $ \sin \left( {{90}^{\circ }}-\alpha \right)=\cos \alpha $ . Let us use this result in equation (1).
\[\Rightarrow \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=\cos {{50}^{\circ }}-\cos {{70}^{\circ }}\] ---(2).
We know that $ \cos A-\cos B=-2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right) $ . Let us use this result in equation (2).
\[\Rightarrow \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=-2\sin \left( \dfrac{{{50}^{\circ }}+{{70}^{\circ }}}{2} \right)\sin \left( \dfrac{{{50}^{\circ }}-{{70}^{\circ }}}{2} \right)\].
\[\Rightarrow \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=-2\sin \left( \dfrac{{{120}^{\circ }}}{2} \right)\sin \left( \dfrac{-{{20}^{\circ }}}{2} \right)\].
\[\Rightarrow \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=-2\sin \left( {{60}^{\circ }} \right)\sin \left( -{{10}^{\circ }} \right)\] ---(3).
We know that $ \sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2} $ and $ \sin \left( -x \right)=-\sin x $ . Let us use these results in equation (3).
\[\Rightarrow \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=-2\left( \dfrac{\sqrt{3}}{2} \right)\left( -\sin {{10}^{\circ }} \right)\].
\[\Rightarrow \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=\sqrt{3}\sin {{10}^{\circ }}\].
\[\Rightarrow \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=\sqrt{3}\sin \left( {{90}^{\circ }}-{{80}^{\circ }} \right)\] ---(4).
We know that $ \sin \left( {{90}^{\circ }}-\alpha \right)=\cos \alpha $ . Let us use this result in equation (4).
\[\Rightarrow \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=\sqrt{3}\cos {{80}^{\circ }}\] ---(5).
From equation (5), we can see that the L.H.S (Left Hand Side) is equal to the given R.H.S (Right-hand side).
$ \therefore $ We have proved the given result \[\sin {{40}^{\circ }}-\cos {{70}^{\circ }}=\sqrt{3}\cos {{80}^{\circ }}\].
Note:
We can also solve the given problem as shown below:
We have \[\sin {{40}^{\circ }}-\cos {{70}^{\circ }}\].
\[\Rightarrow \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=\sin {{40}^{\circ }}-\cos \left( {{90}^{\circ }}-{{20}^{\circ }} \right)\] ---(6).
We know that $ \cos \left( {{90}^{\circ }}-\alpha \right)=\sin \alpha $ . Let us use this result in equation (6).
\[\Rightarrow \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=\sin {{40}^{\circ }}-\sin {{20}^{\circ }}\] ---(7).
We know that $ \sin A-\sin B=2\cos \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right) $ . Let us use this result in equation (7).
\[\Rightarrow \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=2\cos \left( \dfrac{{{40}^{\circ }}+{{20}^{\circ }}}{2} \right)\sin \left( \dfrac{{{40}^{\circ }}-{{20}^{\circ }}}{2} \right)\].
\[\Rightarrow \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=2\cos \left( \dfrac{{{60}^{\circ }}}{2} \right)\sin \left( \dfrac{{{20}^{\circ }}}{2} \right)\].
\[\Rightarrow \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=2\cos \left( {{30}^{\circ }} \right)\sin \left( {{10}^{\circ }} \right)\] ---(8).
We know that $ \cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2} $ . Let us use this result in equation (8).
\[\Rightarrow \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=2\left( \dfrac{\sqrt{3}}{2} \right)\left( \sin {{10}^{\circ }} \right)\].
\[\Rightarrow \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=\sqrt{3}\sin {{10}^{\circ }}\].
\[\Rightarrow \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=\sqrt{3}\sin \left( {{90}^{\circ }}-{{80}^{\circ }} \right)\] ---(9).
We know that $ \sin \left( {{90}^{\circ }}-\alpha \right)=\cos \alpha $ . Let us use this result in equation (9).
\[\Rightarrow \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=\sqrt{3}\cos {{80}^{\circ }}\].
We start solving the problem by considering the L.H.S (Left Hand side) of the given equation. We then make use of the result $ \sin \left( {{90}^{\circ }}-\alpha \right)=\cos \alpha $ to proceed through the problem. We then make use of the result $ \cos A-\cos B=-2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right) $ to proceed through further through the problem. We then make the necessary calculations and make use of the results $ \sin \left( -x \right)=-\sin x $ , $ \sin \left( {{90}^{\circ }}-\alpha \right)=\cos \alpha $ to complete the proof of given result.
Complete step by step answer:
According to the problem, we are asked to prove the given result: $ \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=\sqrt{3}.\cos {{80}^{\circ }} $ .
Let us consider L.H.S (Left Hand side) of the given result i.e., $ \sin {{40}^{\circ }}-\cos {{70}^{\circ }} $ .
\[\Rightarrow \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=\sin \left( {{90}^{\circ }}-{{50}^{\circ }} \right)-\cos {{70}^{\circ }}\] ---(1).
We know that $ \sin \left( {{90}^{\circ }}-\alpha \right)=\cos \alpha $ . Let us use this result in equation (1).
\[\Rightarrow \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=\cos {{50}^{\circ }}-\cos {{70}^{\circ }}\] ---(2).
We know that $ \cos A-\cos B=-2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right) $ . Let us use this result in equation (2).
\[\Rightarrow \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=-2\sin \left( \dfrac{{{50}^{\circ }}+{{70}^{\circ }}}{2} \right)\sin \left( \dfrac{{{50}^{\circ }}-{{70}^{\circ }}}{2} \right)\].
\[\Rightarrow \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=-2\sin \left( \dfrac{{{120}^{\circ }}}{2} \right)\sin \left( \dfrac{-{{20}^{\circ }}}{2} \right)\].
\[\Rightarrow \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=-2\sin \left( {{60}^{\circ }} \right)\sin \left( -{{10}^{\circ }} \right)\] ---(3).
We know that $ \sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2} $ and $ \sin \left( -x \right)=-\sin x $ . Let us use these results in equation (3).
\[\Rightarrow \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=-2\left( \dfrac{\sqrt{3}}{2} \right)\left( -\sin {{10}^{\circ }} \right)\].
\[\Rightarrow \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=\sqrt{3}\sin {{10}^{\circ }}\].
\[\Rightarrow \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=\sqrt{3}\sin \left( {{90}^{\circ }}-{{80}^{\circ }} \right)\] ---(4).
We know that $ \sin \left( {{90}^{\circ }}-\alpha \right)=\cos \alpha $ . Let us use this result in equation (4).
\[\Rightarrow \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=\sqrt{3}\cos {{80}^{\circ }}\] ---(5).
From equation (5), we can see that the L.H.S (Left Hand Side) is equal to the given R.H.S (Right-hand side).
$ \therefore $ We have proved the given result \[\sin {{40}^{\circ }}-\cos {{70}^{\circ }}=\sqrt{3}\cos {{80}^{\circ }}\].
Note:
We can also solve the given problem as shown below:
We have \[\sin {{40}^{\circ }}-\cos {{70}^{\circ }}\].
\[\Rightarrow \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=\sin {{40}^{\circ }}-\cos \left( {{90}^{\circ }}-{{20}^{\circ }} \right)\] ---(6).
We know that $ \cos \left( {{90}^{\circ }}-\alpha \right)=\sin \alpha $ . Let us use this result in equation (6).
\[\Rightarrow \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=\sin {{40}^{\circ }}-\sin {{20}^{\circ }}\] ---(7).
We know that $ \sin A-\sin B=2\cos \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right) $ . Let us use this result in equation (7).
\[\Rightarrow \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=2\cos \left( \dfrac{{{40}^{\circ }}+{{20}^{\circ }}}{2} \right)\sin \left( \dfrac{{{40}^{\circ }}-{{20}^{\circ }}}{2} \right)\].
\[\Rightarrow \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=2\cos \left( \dfrac{{{60}^{\circ }}}{2} \right)\sin \left( \dfrac{{{20}^{\circ }}}{2} \right)\].
\[\Rightarrow \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=2\cos \left( {{30}^{\circ }} \right)\sin \left( {{10}^{\circ }} \right)\] ---(8).
We know that $ \cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2} $ . Let us use this result in equation (8).
\[\Rightarrow \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=2\left( \dfrac{\sqrt{3}}{2} \right)\left( \sin {{10}^{\circ }} \right)\].
\[\Rightarrow \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=\sqrt{3}\sin {{10}^{\circ }}\].
\[\Rightarrow \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=\sqrt{3}\sin \left( {{90}^{\circ }}-{{80}^{\circ }} \right)\] ---(9).
We know that $ \sin \left( {{90}^{\circ }}-\alpha \right)=\cos \alpha $ . Let us use this result in equation (9).
\[\Rightarrow \sin {{40}^{\circ }}-\cos {{70}^{\circ }}=\sqrt{3}\cos {{80}^{\circ }}\].
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE