Answer
Verified
498.6k+ views
Hint: Divide numerator and denominator by $\cos {{9}^{\circ }}$ or $\sin {{9}^{\circ }}$ to get a trigonometric identity.
Complete step-by-step answer:
Use relation $\cot \left( 90-\theta \right)=\tan \theta $ or $\tan \left( 90-\theta \right)=\cot \theta $ for simplifying it further.
We have to prove that,
$\dfrac{\cos {{9}^{\circ }}+\sin {{9}^{\circ }}}{\cos {{9}^{\circ }}-\sin {{9}^{\circ }}}=\cot {{36}^{\circ }}..........\left( i \right)$
Let us prove the given relation by simplifying LHS of equation (i) we have,
LHS$=\dfrac{\cos {{9}^{\circ }}+\sin {{9}^{\circ }}}{\cos {{9}^{\circ }}-\sin {{9}^{\circ }}}$
Dividing numerator and denominator by $\cos {{9}^{\circ }}$, we get,
LHS = $\dfrac{\dfrac{\cos {{9}^{\circ }}+\sin {{9}^{\circ }}}{\cos {{9}^{\circ }}}}{\dfrac{\cos {{9}^{\circ }}-\sin {{9}^{\circ }}}{\cos {{9}^{\circ }}}}$
Now, we can divide $\cos {{9}^{\circ }}$ by $\cos {{9}^{\circ }}$ and $\sin {{9}^{\circ }}$ by $\cos {{9}^{\circ }}$ in numerator and similarly, $\cos {{9}^{\circ }}$ by $\cos {{9}^{\circ }}$ and $\sin {{9}^{\circ }}$ by $\cos {{9}^{\circ }}$ in denominator as well. We get,
LHS = $\dfrac{\dfrac{\cos {{9}^{\circ }}}{\cos {{9}^{\circ }}}+\dfrac{\sin {{9}^{\circ }}}{\cos {{9}^{\circ }}}}{\dfrac{\cos {{9}^{\circ }}}{\cos {{9}^{\circ }}}-\dfrac{\sin {{9}^{\circ }}}{\cos {{9}^{\circ }}}}............(ii)$
We have trigonometric identity,
$\tan \theta =\dfrac{\sin \theta }{\cos \theta }...........(iii)$
Hence, equation (ii) can be simplified as
LHS = $\dfrac{1+\tan {{9}^{\circ }}}{1-\tan {{9}^{\circ }}}=\dfrac{1+\tan {{9}^{\circ }}}{1-\tan {{9}^{\circ }}\left( 1 \right)}$
As we know, $\tan {{45}^{\circ }}=1$ , so above equation can be written as
LHS = $\dfrac{\tan {{45}^{\circ }}+\tan {{9}^{\circ }}}{1-\tan {{9}^{\circ }}\tan {{45}^{\circ }}}.............\left( iv \right)$
Now, using trigonometric identity,
$\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A+\tan B}$
Hence equation (iv) can be rewritten with the help of the above equation. So, we get
LHS = $\tan \left( 45+9 \right)=\tan {{54}^{\circ }}$
Now, we can use relation $\tan \left( {{90}^{\circ }}-\theta \right)=\cot \theta $ to convert the ‘tan’ function to ‘cot’.
Hence, LHS can be given as
LHS = $\tan \left( 90-36 \right)=\cot {{36}^{\circ }}$
Therefore, LHS = RHS = $\cot {{36}^{\circ }}$
Hence proved the given relation
Note: Another approach for the given question would be to use trigonometric identities
$\cos C+\cos D=2\cos \dfrac{C+D}{2}\cos \dfrac{C-D}{2}$
$\cos C-\cos D=-2\sin \dfrac{C+D}{2}\sin \dfrac{C-D}{2}$
Use relation $\cos \theta =\sin \left( 90-\theta \right)$
So, LHS = $\dfrac{\cos {{9}^{\circ }}+\cos {{81}^{\circ }}}{\cos 9-\cos 81}$
One can go wrong while converting $\dfrac{\tan 45+\tan {{9}^{\circ }}}{1-\tan 9\tan 45}$ to $\tan {{54}^{\circ }}$ .
He or she may confuse between formula tan(A-B) and tan(A+B).
Complete step-by-step answer:
Use relation $\cot \left( 90-\theta \right)=\tan \theta $ or $\tan \left( 90-\theta \right)=\cot \theta $ for simplifying it further.
We have to prove that,
$\dfrac{\cos {{9}^{\circ }}+\sin {{9}^{\circ }}}{\cos {{9}^{\circ }}-\sin {{9}^{\circ }}}=\cot {{36}^{\circ }}..........\left( i \right)$
Let us prove the given relation by simplifying LHS of equation (i) we have,
LHS$=\dfrac{\cos {{9}^{\circ }}+\sin {{9}^{\circ }}}{\cos {{9}^{\circ }}-\sin {{9}^{\circ }}}$
Dividing numerator and denominator by $\cos {{9}^{\circ }}$, we get,
LHS = $\dfrac{\dfrac{\cos {{9}^{\circ }}+\sin {{9}^{\circ }}}{\cos {{9}^{\circ }}}}{\dfrac{\cos {{9}^{\circ }}-\sin {{9}^{\circ }}}{\cos {{9}^{\circ }}}}$
Now, we can divide $\cos {{9}^{\circ }}$ by $\cos {{9}^{\circ }}$ and $\sin {{9}^{\circ }}$ by $\cos {{9}^{\circ }}$ in numerator and similarly, $\cos {{9}^{\circ }}$ by $\cos {{9}^{\circ }}$ and $\sin {{9}^{\circ }}$ by $\cos {{9}^{\circ }}$ in denominator as well. We get,
LHS = $\dfrac{\dfrac{\cos {{9}^{\circ }}}{\cos {{9}^{\circ }}}+\dfrac{\sin {{9}^{\circ }}}{\cos {{9}^{\circ }}}}{\dfrac{\cos {{9}^{\circ }}}{\cos {{9}^{\circ }}}-\dfrac{\sin {{9}^{\circ }}}{\cos {{9}^{\circ }}}}............(ii)$
We have trigonometric identity,
$\tan \theta =\dfrac{\sin \theta }{\cos \theta }...........(iii)$
Hence, equation (ii) can be simplified as
LHS = $\dfrac{1+\tan {{9}^{\circ }}}{1-\tan {{9}^{\circ }}}=\dfrac{1+\tan {{9}^{\circ }}}{1-\tan {{9}^{\circ }}\left( 1 \right)}$
As we know, $\tan {{45}^{\circ }}=1$ , so above equation can be written as
LHS = $\dfrac{\tan {{45}^{\circ }}+\tan {{9}^{\circ }}}{1-\tan {{9}^{\circ }}\tan {{45}^{\circ }}}.............\left( iv \right)$
Now, using trigonometric identity,
$\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A+\tan B}$
Hence equation (iv) can be rewritten with the help of the above equation. So, we get
LHS = $\tan \left( 45+9 \right)=\tan {{54}^{\circ }}$
Now, we can use relation $\tan \left( {{90}^{\circ }}-\theta \right)=\cot \theta $ to convert the ‘tan’ function to ‘cot’.
Hence, LHS can be given as
LHS = $\tan \left( 90-36 \right)=\cot {{36}^{\circ }}$
Therefore, LHS = RHS = $\cot {{36}^{\circ }}$
Hence proved the given relation
Note: Another approach for the given question would be to use trigonometric identities
$\cos C+\cos D=2\cos \dfrac{C+D}{2}\cos \dfrac{C-D}{2}$
$\cos C-\cos D=-2\sin \dfrac{C+D}{2}\sin \dfrac{C-D}{2}$
Use relation $\cos \theta =\sin \left( 90-\theta \right)$
So, LHS = $\dfrac{\cos {{9}^{\circ }}+\cos {{81}^{\circ }}}{\cos 9-\cos 81}$
One can go wrong while converting $\dfrac{\tan 45+\tan {{9}^{\circ }}}{1-\tan 9\tan 45}$ to $\tan {{54}^{\circ }}$ .
He or she may confuse between formula tan(A-B) and tan(A+B).
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE