Answer
Verified
431.4k+ views
Hint: To solve such questions start by separately computing the left-hand side and right-hand side of the given equation. Next, write each term in the given equation to its corresponding $\sin x$ and $\cos x$ values. Then check whether the left-hand side and right-hand side are equal.
Complete step by step answer:
Given $\dfrac{{\tan x}}{{\cos ecx + \cot x}} = \sec x - 1$
First consider the left-hand side of the given equation, that is,
$\dfrac{{\tan x}}{{\cos ecx + \cot x}}......(1)$
We know that
$\tan x = \dfrac{{\sin x}}{{\cos x}}$
Also, it is known that
$\cos ecx = \dfrac{1}{{\sin x}}$
And
$\cot x = \dfrac{{\cos x}}{{\sin x}}$
Substitute these in the equation $\left( 1 \right)$ , that is,
$\dfrac{{\dfrac{{\sin x}}{{\cos x}}}}{{\dfrac{1}{{\sin x}} + \dfrac{{\cos x}}{{\sin x}}}}$
Rearranging the terms we get,
$\dfrac{{\sin x}}{{\cos x\left( {\dfrac{{1 + \cos x}}{{\sin x}}} \right)}}$
Taking $\sin x$ to the numerator we get
$\dfrac{{{{\sin }^2}x}}{{\cos x\left( {1 + \cos x} \right)}}......(2)$
We also know that,
${\sin ^2}x + {\cos ^2}x = 1$
Rearranging this we get,
${\sin ^2}x = 1 - {\cos ^2}x$
Substituting this in the equation $\left( 2 \right)$
$\dfrac{{1 - {{\cos }^2}x}}{{\cos x\left( {1 + \cos x} \right)}}$
We know the identity ${a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)$ , so we can write the above equation as,
$\dfrac{{\left( {1 + \cos x} \right)\left( {1 - \cos x} \right)}}{{\cos x\left( {1 + \cos x} \right)}}$
Canceling out the common terms in the numerator and denominator, we get,
$\dfrac{{1 - \cos x}}{{\cos x}}......(3)$
Next consider the right-hand side of $\dfrac{{\tan x}}{{\cos ecx + \cot x}} = \sec x - 1$ , that is
$\sec x - 1$
We know that,
$\sec x = \dfrac{1}{{\cos x}}$
Substituting this on the right-hand side, we get,
$\dfrac{1}{{\cos x}} - 1$
Further simplifying we get,
$\dfrac{{1 - \cos x}}{{\cos x}}......(4)$
From equation $\left( 3 \right)$ and equation $\left( 4 \right)$ , it can be seen that LHS is equal to RHS.
Therefore, proved the identity $\dfrac{{\tan x}}{{\cos ecx + \cot x}} = \sec x - 1$ .
Additional information:
All trigonometric ratios of angle can be easily found if one of the trigonometric ratios of an acute angle is given. The value of $\sin x$ or $\cos x$ never goes beyond $1$ . Also, the value of $\sec x$ or $\cos ecx$ is always greater than or equal to $1$ .
Note: In order to solve these types of questions, one should be very clear about the trigonometric identities. The simplest way to solve this type of question is to equate each term of the equation to its corresponding $\sin x$ and $\cos x$ values
Complete step by step answer:
Given $\dfrac{{\tan x}}{{\cos ecx + \cot x}} = \sec x - 1$
First consider the left-hand side of the given equation, that is,
$\dfrac{{\tan x}}{{\cos ecx + \cot x}}......(1)$
We know that
$\tan x = \dfrac{{\sin x}}{{\cos x}}$
Also, it is known that
$\cos ecx = \dfrac{1}{{\sin x}}$
And
$\cot x = \dfrac{{\cos x}}{{\sin x}}$
Substitute these in the equation $\left( 1 \right)$ , that is,
$\dfrac{{\dfrac{{\sin x}}{{\cos x}}}}{{\dfrac{1}{{\sin x}} + \dfrac{{\cos x}}{{\sin x}}}}$
Rearranging the terms we get,
$\dfrac{{\sin x}}{{\cos x\left( {\dfrac{{1 + \cos x}}{{\sin x}}} \right)}}$
Taking $\sin x$ to the numerator we get
$\dfrac{{{{\sin }^2}x}}{{\cos x\left( {1 + \cos x} \right)}}......(2)$
We also know that,
${\sin ^2}x + {\cos ^2}x = 1$
Rearranging this we get,
${\sin ^2}x = 1 - {\cos ^2}x$
Substituting this in the equation $\left( 2 \right)$
$\dfrac{{1 - {{\cos }^2}x}}{{\cos x\left( {1 + \cos x} \right)}}$
We know the identity ${a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)$ , so we can write the above equation as,
$\dfrac{{\left( {1 + \cos x} \right)\left( {1 - \cos x} \right)}}{{\cos x\left( {1 + \cos x} \right)}}$
Canceling out the common terms in the numerator and denominator, we get,
$\dfrac{{1 - \cos x}}{{\cos x}}......(3)$
Next consider the right-hand side of $\dfrac{{\tan x}}{{\cos ecx + \cot x}} = \sec x - 1$ , that is
$\sec x - 1$
We know that,
$\sec x = \dfrac{1}{{\cos x}}$
Substituting this on the right-hand side, we get,
$\dfrac{1}{{\cos x}} - 1$
Further simplifying we get,
$\dfrac{{1 - \cos x}}{{\cos x}}......(4)$
From equation $\left( 3 \right)$ and equation $\left( 4 \right)$ , it can be seen that LHS is equal to RHS.
Therefore, proved the identity $\dfrac{{\tan x}}{{\cos ecx + \cot x}} = \sec x - 1$ .
Additional information:
All trigonometric ratios of angle can be easily found if one of the trigonometric ratios of an acute angle is given. The value of $\sin x$ or $\cos x$ never goes beyond $1$ . Also, the value of $\sec x$ or $\cos ecx$ is always greater than or equal to $1$ .
Note: In order to solve these types of questions, one should be very clear about the trigonometric identities. The simplest way to solve this type of question is to equate each term of the equation to its corresponding $\sin x$ and $\cos x$ values
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE