Answer
Verified
429.3k+ views
Hint: For this question, first you need to know the formula of vector projections. Then you need to write it down and write the formula of the unit vector. Then you have to multiply both the numerator and the denominator with b vectors. Then you can use the formula of the dot product of two vectors and finally substitute it in the equation to get the answer.
Complete step by step solution:
According to the problem, we are asked to prove the projection law using vectors
For this, first we need to write the vector projection of one vector on another vector. Here we will consider a as one vector and b as another vector. We consider this equation as equation 1.
Vector projection of $ \overrightarrow{a}$ on $ \overrightarrow{b}$ is given by
Projection = $ \left| \overrightarrow{a} \right|\cos \theta $ . unit vector of $ \overrightarrow{b}$ ------- (1)
The unit vector of b can be written as $ \dfrac{\overrightarrow{b}}{\left| \overrightarrow{b} \right|}$. Therefore substituting this in equation 1, we
get:
$ \Rightarrow projection=\left| \overrightarrow{a} \right|\cos \theta .\dfrac{\overrightarrow{b}}{\left| \overrightarrow{b} \right|}$
Now, we will multiply both the numerator and denominator with the $ \left| \overrightarrow{b} \right|$. Therefore, by doing this we get:
$ \Rightarrow projection=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|\cos \theta .\dfrac{\overrightarrow{b}}{{{\left| \overrightarrow{b} \right|}^{2}}}$ ------- (2)
$ \overrightarrow{a}.\overrightarrow{b}=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|\cos \theta $. Putting this in the above equation we get the following:
$ \Rightarrow projection=\left( \overrightarrow{a}.\overrightarrow{b} \right)\dfrac{\overrightarrow{b}}{{{\left| \overrightarrow{b} \right|}^{2}}}$
Therefore, we proved the projection law for two vectors using vectors.
Note: It is important that you should know the basic formulas for vectors. To solve this problem, you have to know the projection of one vector on another vector formula and you need to know the dot product of two vectors formulas.
Complete step by step solution:
According to the problem, we are asked to prove the projection law using vectors
For this, first we need to write the vector projection of one vector on another vector. Here we will consider a as one vector and b as another vector. We consider this equation as equation 1.
Vector projection of $ \overrightarrow{a}$ on $ \overrightarrow{b}$ is given by
Projection = $ \left| \overrightarrow{a} \right|\cos \theta $ . unit vector of $ \overrightarrow{b}$ ------- (1)
The unit vector of b can be written as $ \dfrac{\overrightarrow{b}}{\left| \overrightarrow{b} \right|}$. Therefore substituting this in equation 1, we
get:
$ \Rightarrow projection=\left| \overrightarrow{a} \right|\cos \theta .\dfrac{\overrightarrow{b}}{\left| \overrightarrow{b} \right|}$
Now, we will multiply both the numerator and denominator with the $ \left| \overrightarrow{b} \right|$. Therefore, by doing this we get:
$ \Rightarrow projection=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|\cos \theta .\dfrac{\overrightarrow{b}}{{{\left| \overrightarrow{b} \right|}^{2}}}$ ------- (2)
$ \overrightarrow{a}.\overrightarrow{b}=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|\cos \theta $. Putting this in the above equation we get the following:
$ \Rightarrow projection=\left( \overrightarrow{a}.\overrightarrow{b} \right)\dfrac{\overrightarrow{b}}{{{\left| \overrightarrow{b} \right|}^{2}}}$
Therefore, we proved the projection law for two vectors using vectors.
Note: It is important that you should know the basic formulas for vectors. To solve this problem, you have to know the projection of one vector on another vector formula and you need to know the dot product of two vectors formulas.
Recently Updated Pages
How is Abiogenesis Theory Disproved Experimentally?
Master Class 9 Science: Engaging Questions & Answers for Success
Master Class 9 English: Engaging Questions & Answers for Success
Class 9 Question and Answer - Your Ultimate Solutions Guide
Master Class 9 Maths: Engaging Questions & Answers for Success
Master Class 9 General Knowledge: Engaging Questions & Answers for Success
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Pigmented layer in the eye is called as a Cornea b class 11 biology CBSE
10 examples of friction in our daily life
The lightest gas is A nitrogen B helium C oxygen D class 11 chemistry CBSE
State the laws of reflection of light