Answer
Verified
414.3k+ views
Hint: For this question, first you need to know the formula of vector projections. Then you need to write it down and write the formula of the unit vector. Then you have to multiply both the numerator and the denominator with b vectors. Then you can use the formula of the dot product of two vectors and finally substitute it in the equation to get the answer.
Complete step by step solution:
According to the problem, we are asked to prove the projection law using vectors
For this, first we need to write the vector projection of one vector on another vector. Here we will consider a as one vector and b as another vector. We consider this equation as equation 1.
Vector projection of $ \overrightarrow{a}$ on $ \overrightarrow{b}$ is given by
Projection = $ \left| \overrightarrow{a} \right|\cos \theta $ . unit vector of $ \overrightarrow{b}$ ------- (1)
The unit vector of b can be written as $ \dfrac{\overrightarrow{b}}{\left| \overrightarrow{b} \right|}$. Therefore substituting this in equation 1, we
get:
$ \Rightarrow projection=\left| \overrightarrow{a} \right|\cos \theta .\dfrac{\overrightarrow{b}}{\left| \overrightarrow{b} \right|}$
Now, we will multiply both the numerator and denominator with the $ \left| \overrightarrow{b} \right|$. Therefore, by doing this we get:
$ \Rightarrow projection=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|\cos \theta .\dfrac{\overrightarrow{b}}{{{\left| \overrightarrow{b} \right|}^{2}}}$ ------- (2)
$ \overrightarrow{a}.\overrightarrow{b}=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|\cos \theta $. Putting this in the above equation we get the following:
$ \Rightarrow projection=\left( \overrightarrow{a}.\overrightarrow{b} \right)\dfrac{\overrightarrow{b}}{{{\left| \overrightarrow{b} \right|}^{2}}}$
Therefore, we proved the projection law for two vectors using vectors.
Note: It is important that you should know the basic formulas for vectors. To solve this problem, you have to know the projection of one vector on another vector formula and you need to know the dot product of two vectors formulas.
Complete step by step solution:
According to the problem, we are asked to prove the projection law using vectors
For this, first we need to write the vector projection of one vector on another vector. Here we will consider a as one vector and b as another vector. We consider this equation as equation 1.
Vector projection of $ \overrightarrow{a}$ on $ \overrightarrow{b}$ is given by
Projection = $ \left| \overrightarrow{a} \right|\cos \theta $ . unit vector of $ \overrightarrow{b}$ ------- (1)
The unit vector of b can be written as $ \dfrac{\overrightarrow{b}}{\left| \overrightarrow{b} \right|}$. Therefore substituting this in equation 1, we
get:
$ \Rightarrow projection=\left| \overrightarrow{a} \right|\cos \theta .\dfrac{\overrightarrow{b}}{\left| \overrightarrow{b} \right|}$
Now, we will multiply both the numerator and denominator with the $ \left| \overrightarrow{b} \right|$. Therefore, by doing this we get:
$ \Rightarrow projection=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|\cos \theta .\dfrac{\overrightarrow{b}}{{{\left| \overrightarrow{b} \right|}^{2}}}$ ------- (2)
$ \overrightarrow{a}.\overrightarrow{b}=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|\cos \theta $. Putting this in the above equation we get the following:
$ \Rightarrow projection=\left( \overrightarrow{a}.\overrightarrow{b} \right)\dfrac{\overrightarrow{b}}{{{\left| \overrightarrow{b} \right|}^{2}}}$
Therefore, we proved the projection law for two vectors using vectors.
Note: It is important that you should know the basic formulas for vectors. To solve this problem, you have to know the projection of one vector on another vector formula and you need to know the dot product of two vectors formulas.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE