Answer
Verified
496.8k+ views
Hint: Convert cosine functions involved in the expression to sine functions using the identity $\cos \left( 90-\theta \right)=\sin \theta .$ Now, use identities of $\sin C-\sin D$ and $\sin C+\sin D$ to get the Right hand side.
Complete step by step solution:
We have to prove,
$\dfrac{\cos {{11}^{\circ }}-\sin {{11}^{\circ }}}{\cos {{11}^{\circ }}+\sin {{11}^{\circ }}}=\cot 56.................\left( i \right)$
As we need to prove the above equation, we can simplify the left hand side of the equation to equate it to the right hand side.
\[LHS=\dfrac{\cos {{11}^{\circ }}-\sin {{11}^{\circ }}}{\cos {{11}^{\circ }}+\sin {{11}^{\circ }}}.................\left( ii \right)\]
Now we can make the whole equation is sine function only by converting cosine to sine by using the formula,
$\cos \left( 90-\theta \right)=\sin \theta ..................\left( iii \right)$
So, we can write $\cos {{11}^{\circ }}$ as $\cos \left( {{90}^{\circ }}-{{79}^{\circ }} \right)$ and hence, using the equation (iii) we get,
$\cos {{11}^{\circ }}=\cos \left( {{90}^{\circ }}-{{79}^{\circ }} \right)=\sin {{79}^{\circ }}..............\left( iv \right)$
Now replace $\cos {{11}^{\circ }}$ from the equation (ii) by using equation (iv). Hence we get,
$LHS=\dfrac{\sin {{79}^{\circ }}-\sin {{11}^{\circ }}}{\sin {{79}^{\circ }}+\sin {{11}^{\circ }}}.................\left( v \right)$
Now, we can use trigonometric identity of $\sin A-\sin B$ and $\sin A+\sin B$ to evaluate the value of expression in equation (v). Hence, identities of $\sin A-\sin B$ and $\sin A+\sin B$ can be given as,
$\sin A-\sin B=2\sin \dfrac{A-B}{2}\cos \dfrac{A+B}{2}$
$\sin A+\sin B=2\sin \dfrac{A+B}{2}\cos \dfrac{A-B}{2}$
Hence, we can simplify equation (V) by using the above identities. Hence, we get
$LHS=\dfrac{2\sin \left( \dfrac{{{79}^{\circ }}-{{11}^{\circ }}}{2} \right)\cos \left( \dfrac{{{79}^{\circ }}+{{11}^{\circ }}}{2} \right)}{2\sin \left( \dfrac{{{79}^{\circ }}+{{11}^{\circ }}}{2} \right)\cos \left( \dfrac{{{79}^{\circ }}-{{11}^{\circ }}}{2} \right)}$
$LHS=\dfrac{\sin \left( \dfrac{68}{2} \right)\cos \left( \dfrac{90}{2} \right)}{\sin \left( \dfrac{90}{2} \right)\cos \left( \dfrac{68}{2} \right)}$
$LHS=\dfrac{\sin {{34}^{\circ }}\cos {{45}^{\circ }}}{\sin {{45}^{\circ }}\cos {{34}^{\circ }}}$
Now, we can put values of $\sin {{45}^{\circ }}$ and $\cos {{45}^{\circ }}$ as $\dfrac{1}{\sqrt{2}}.$ Hence we get
$LHS=\dfrac{\sin {{34}^{\circ }}\left( \dfrac{1}{\sqrt{2}} \right)}{\left( \dfrac{1}{\sqrt{2}} \right)\cos {{34}^{\circ }}}=\dfrac{\sin {{34}^{\circ }}}{\cos {{34}^{\circ }}}$
Now, we know that $\dfrac{\sin \theta }{\cos \theta }=\tan \theta .$ Hence we get LHS as
$LHS=\tan {{34}^{\circ }}................\left( vi \right)$
Now, we can convert the $'\tan '$expression of LHS to cosine by using the identity
$\tan \left( 90-\theta \right)=\cot \theta .............\left( vii \right)$
Hence, we can write the LHS from equation (vii), we get
$LHS=\tan {{34}^{\circ }}=\tan \left( 90-56 \right)$
$LHS=\cot {{56}^{\circ }}..............\left( viii \right)$
Hence, from the equation (i) and (viii) we get,
$LHS=RHS=\cot {{56}^{\circ }}$
So, the given expression is proved.
Note: One can convert $\sin {{11}^{\circ }}$ to cosine function as well by using the relation $\sin \left( 90-\theta \right)=\cos \theta .$ And hence apply formula of $\cos A-\cos B$ and $\cos A+\cos B$ to get the answer.
We can divide the whole expression by $\cos {{11}^{\circ }}$ i.e. numerator and denominator both. Hence we get
$\dfrac{1-\tan {{11}^{\circ }}}{1+\tan {{11}^{\circ }}}=\dfrac{\tan {{45}^{\circ }}-\tan {{11}^{\circ }}}{1+\tan {{45}^{\circ }}\tan {{11}^{\circ }}}=\tan \left( 45-11 \right)=\tan {{34}^{\circ }}=\cot {{56}^{\circ }}=RHS.$
Always remember the identities of trigonometric we need to use them according to the question for the flexibility of solution. Don’t get confused with the formula of $\sin A-\sin B$ and $\sin A+\sin B$ in the solution.
Complete step by step solution:
We have to prove,
$\dfrac{\cos {{11}^{\circ }}-\sin {{11}^{\circ }}}{\cos {{11}^{\circ }}+\sin {{11}^{\circ }}}=\cot 56.................\left( i \right)$
As we need to prove the above equation, we can simplify the left hand side of the equation to equate it to the right hand side.
\[LHS=\dfrac{\cos {{11}^{\circ }}-\sin {{11}^{\circ }}}{\cos {{11}^{\circ }}+\sin {{11}^{\circ }}}.................\left( ii \right)\]
Now we can make the whole equation is sine function only by converting cosine to sine by using the formula,
$\cos \left( 90-\theta \right)=\sin \theta ..................\left( iii \right)$
So, we can write $\cos {{11}^{\circ }}$ as $\cos \left( {{90}^{\circ }}-{{79}^{\circ }} \right)$ and hence, using the equation (iii) we get,
$\cos {{11}^{\circ }}=\cos \left( {{90}^{\circ }}-{{79}^{\circ }} \right)=\sin {{79}^{\circ }}..............\left( iv \right)$
Now replace $\cos {{11}^{\circ }}$ from the equation (ii) by using equation (iv). Hence we get,
$LHS=\dfrac{\sin {{79}^{\circ }}-\sin {{11}^{\circ }}}{\sin {{79}^{\circ }}+\sin {{11}^{\circ }}}.................\left( v \right)$
Now, we can use trigonometric identity of $\sin A-\sin B$ and $\sin A+\sin B$ to evaluate the value of expression in equation (v). Hence, identities of $\sin A-\sin B$ and $\sin A+\sin B$ can be given as,
$\sin A-\sin B=2\sin \dfrac{A-B}{2}\cos \dfrac{A+B}{2}$
$\sin A+\sin B=2\sin \dfrac{A+B}{2}\cos \dfrac{A-B}{2}$
Hence, we can simplify equation (V) by using the above identities. Hence, we get
$LHS=\dfrac{2\sin \left( \dfrac{{{79}^{\circ }}-{{11}^{\circ }}}{2} \right)\cos \left( \dfrac{{{79}^{\circ }}+{{11}^{\circ }}}{2} \right)}{2\sin \left( \dfrac{{{79}^{\circ }}+{{11}^{\circ }}}{2} \right)\cos \left( \dfrac{{{79}^{\circ }}-{{11}^{\circ }}}{2} \right)}$
$LHS=\dfrac{\sin \left( \dfrac{68}{2} \right)\cos \left( \dfrac{90}{2} \right)}{\sin \left( \dfrac{90}{2} \right)\cos \left( \dfrac{68}{2} \right)}$
$LHS=\dfrac{\sin {{34}^{\circ }}\cos {{45}^{\circ }}}{\sin {{45}^{\circ }}\cos {{34}^{\circ }}}$
Now, we can put values of $\sin {{45}^{\circ }}$ and $\cos {{45}^{\circ }}$ as $\dfrac{1}{\sqrt{2}}.$ Hence we get
$LHS=\dfrac{\sin {{34}^{\circ }}\left( \dfrac{1}{\sqrt{2}} \right)}{\left( \dfrac{1}{\sqrt{2}} \right)\cos {{34}^{\circ }}}=\dfrac{\sin {{34}^{\circ }}}{\cos {{34}^{\circ }}}$
Now, we know that $\dfrac{\sin \theta }{\cos \theta }=\tan \theta .$ Hence we get LHS as
$LHS=\tan {{34}^{\circ }}................\left( vi \right)$
Now, we can convert the $'\tan '$expression of LHS to cosine by using the identity
$\tan \left( 90-\theta \right)=\cot \theta .............\left( vii \right)$
Hence, we can write the LHS from equation (vii), we get
$LHS=\tan {{34}^{\circ }}=\tan \left( 90-56 \right)$
$LHS=\cot {{56}^{\circ }}..............\left( viii \right)$
Hence, from the equation (i) and (viii) we get,
$LHS=RHS=\cot {{56}^{\circ }}$
So, the given expression is proved.
Note: One can convert $\sin {{11}^{\circ }}$ to cosine function as well by using the relation $\sin \left( 90-\theta \right)=\cos \theta .$ And hence apply formula of $\cos A-\cos B$ and $\cos A+\cos B$ to get the answer.
We can divide the whole expression by $\cos {{11}^{\circ }}$ i.e. numerator and denominator both. Hence we get
$\dfrac{1-\tan {{11}^{\circ }}}{1+\tan {{11}^{\circ }}}=\dfrac{\tan {{45}^{\circ }}-\tan {{11}^{\circ }}}{1+\tan {{45}^{\circ }}\tan {{11}^{\circ }}}=\tan \left( 45-11 \right)=\tan {{34}^{\circ }}=\cot {{56}^{\circ }}=RHS.$
Always remember the identities of trigonometric we need to use them according to the question for the flexibility of solution. Don’t get confused with the formula of $\sin A-\sin B$ and $\sin A+\sin B$ in the solution.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE