Answer
Verified
431.7k+ views
Hint: The above question is based on the concept of slope-intercept form. The main approach towards solving the equation is by applying the formula of the equation of straight line. So, using this formula we need to write the equation in that form by shifting the terms on the other side.
Complete step-by-step answer:
One of the forms of the equation of a straight line is also called slope intercept form. We know the equation of straight line in slope intercept form is \[y = mx + c\]
Where m denotes the slope of the line and c is the y-intercept of the line.
The standard equation of first degree is \[Ax + By + C = 0\] can be written in the slope intercept form as :
\[y = \left( { - \dfrac{A}{B}} \right)x - \left( {\dfrac{C}{B}} \right)\]
where \[m = \left( { - \dfrac{A}{B}} \right)\] and \[c = \left( { - \dfrac{C}{B}} \right)\]
and also \[B \ne 0\] .
So now the given equation is $2x - 3y = 6$
So first we need to shift the terms which are on the left-hand side towards the right hand side.
Therefore, we get
\[
\Rightarrow 2x - 3y = 6 \\
\Rightarrow - 3y = - 2x + 6 \\
\]
Then by multiplying it with negative sign throughout the equation we get,
\[3y = 2x - 6\]
Then we need to isolate the term y so we shift the number 3 on the right hand side to the denominator.
\[y = \dfrac{2}{3}x - 2\]
Hence the standard equation of first degree is written in the above slope intercept form
So, the correct answer is “\[y = \dfrac{2}{3}x - 2\] ”.
Note: An important thing to note is that here the c=-2 i.e., the y-intercept of the equation is -2.In the graph we plot the equation we get to know that the equation of line will cut y-axis at -2 and the slope which is \[\dfrac{2}{3}\] which gives the direction of the line.
Complete step-by-step answer:
One of the forms of the equation of a straight line is also called slope intercept form. We know the equation of straight line in slope intercept form is \[y = mx + c\]
Where m denotes the slope of the line and c is the y-intercept of the line.
The standard equation of first degree is \[Ax + By + C = 0\] can be written in the slope intercept form as :
\[y = \left( { - \dfrac{A}{B}} \right)x - \left( {\dfrac{C}{B}} \right)\]
where \[m = \left( { - \dfrac{A}{B}} \right)\] and \[c = \left( { - \dfrac{C}{B}} \right)\]
and also \[B \ne 0\] .
So now the given equation is $2x - 3y = 6$
So first we need to shift the terms which are on the left-hand side towards the right hand side.
Therefore, we get
\[
\Rightarrow 2x - 3y = 6 \\
\Rightarrow - 3y = - 2x + 6 \\
\]
Then by multiplying it with negative sign throughout the equation we get,
\[3y = 2x - 6\]
Then we need to isolate the term y so we shift the number 3 on the right hand side to the denominator.
\[y = \dfrac{2}{3}x - 2\]
Hence the standard equation of first degree is written in the above slope intercept form
So, the correct answer is “\[y = \dfrac{2}{3}x - 2\] ”.
Note: An important thing to note is that here the c=-2 i.e., the y-intercept of the equation is -2.In the graph we plot the equation we get to know that the equation of line will cut y-axis at -2 and the slope which is \[\dfrac{2}{3}\] which gives the direction of the line.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE