
Put the following in the form A+iB:
$\dfrac{{5 + 4i}}{{4 + 5i}}$
Answer
619.5k+ views
Hint – Any complex number can be converted into the form of A+iB where A is the real part and B is the imaginary part. Use rationalization of the denominator in order to simplify the given complex number. Use of algebraic identities will help you get the desired form.
Complete step-by-step answer:
Given complex number is
$\dfrac{{5 + 4i}}{{4 + 5i}}$
Now we have to convert this in the form of (A + iB).
So, first rationalize the number by (4 – 5i), (i.e. multiply and divide by (4 - 5i) in the given complex number) we have,
$ \Rightarrow \dfrac{{5 + 4i}}{{4 + 5i}} \times \dfrac{{4 - 5i}}{{4 - 5i}}$
Now multiply the numerator and in denominator apply the rule $\left[ {\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}} \right]$
$ \Rightarrow \dfrac{{20 - 25i + 16i - 20{i^2}}}{{16 - 25{i^2}}}$
Now as we know in complex the value of $\left[ {{i^2} = - 1} \right]$ so, use this property in above equation we have,
$ \Rightarrow \dfrac{{20 - 25i + 16i - 20\left( { - 1} \right)}}{{16 - 25\left( { - 1} \right)}}$
Now simplify the above equation we have,
$ \Rightarrow \dfrac{{20 - 9i + 20}}{{16 + 25}} = \dfrac{{40 - 9i}}{{41}}$
$ \Rightarrow \dfrac{{5 + 4i}}{{4 + 5i}} = \dfrac{{40}}{{41}} - i\dfrac{9}{{41}}$
So this is the required form.
Hence this is the required answer.
Note – Whenever we face such types of problems the key concept is simply to rationalize and simplify the given denominator part in order to be able to segregate the real and imaginary part to obtain the A+iB form for the given complex number.
Complete step-by-step answer:
Given complex number is
$\dfrac{{5 + 4i}}{{4 + 5i}}$
Now we have to convert this in the form of (A + iB).
So, first rationalize the number by (4 – 5i), (i.e. multiply and divide by (4 - 5i) in the given complex number) we have,
$ \Rightarrow \dfrac{{5 + 4i}}{{4 + 5i}} \times \dfrac{{4 - 5i}}{{4 - 5i}}$
Now multiply the numerator and in denominator apply the rule $\left[ {\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}} \right]$
$ \Rightarrow \dfrac{{20 - 25i + 16i - 20{i^2}}}{{16 - 25{i^2}}}$
Now as we know in complex the value of $\left[ {{i^2} = - 1} \right]$ so, use this property in above equation we have,
$ \Rightarrow \dfrac{{20 - 25i + 16i - 20\left( { - 1} \right)}}{{16 - 25\left( { - 1} \right)}}$
Now simplify the above equation we have,
$ \Rightarrow \dfrac{{20 - 9i + 20}}{{16 + 25}} = \dfrac{{40 - 9i}}{{41}}$
$ \Rightarrow \dfrac{{5 + 4i}}{{4 + 5i}} = \dfrac{{40}}{{41}} - i\dfrac{9}{{41}}$
So this is the required form.
Hence this is the required answer.
Note – Whenever we face such types of problems the key concept is simply to rationalize and simplify the given denominator part in order to be able to segregate the real and imaginary part to obtain the A+iB form for the given complex number.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

