Answer
Verified
445.5k+ views
Hint: Here, both the motorcyclist and the car are moving, this means the honk heard by him will have an apparent frequency. Apparent frequency is the frequency perceived by an observer. It may or may not be equal to the value of actual frequency. So use the formula of apparent frequency to solve the question.
Formula used:
Apparent frequency of a sound is $f = {f_o}\left( {\dfrac{{v + {v_o}}}{{v + {v_s}}}} \right)$, where v is the velocity of sound, ${v_o}$ is the velocity of the observer, ${v_s}$ is the velocity of the source and ${f_o}$ is the actual frequency.
Complete step by step answer:
We are given that a speeding motorcyclist sees a traffic jam ahead of him and then he slows down to 36km/ hour and then he finds a car moving ahead of him at 18km/ hour is honking at a frequency of 1392 Hz.
We have to find the frequency of the honk sound as heard by him when the speed of sound is 343m/ s.
Here, the motorcyclist is travelling on a motorcycle and another person is travelling in a car.
And both the motorcycle and the car are moving. So the frequency of the sound produced by the car honk will be the apparent frequency.
Apparent frequency can be calculated using $f = {f_o}\left( {\dfrac{{v + {v_o}}}{{v + {v_s}}}} \right)$
Speed of the motorcycle and the car are given in km/ hour. So, convert them into m/ s by multiplying with $\dfrac{5}{{18}}$
$
f = {f_o}\left( {\dfrac{{v + {v_o}}}{{v + {v_s}}}} \right) \\
{f_o} = 1392Hz,v = 343m/s \\
{v_o} = 36km/hour = 36 \times \dfrac{5}{{18}}m/s = 10m/s \\
{v_s} = 18km/hour = 18 \times \dfrac{5}{{18}}m/s = 5m/s \\
\implies f = 1392\left( {\dfrac{{343 + 10}}{{343 + 5}}} \right) \\
\implies f = 1392 \times \dfrac{{353}}{{348}} \\
\therefore f = 1412Hz \\
$
Therefore, the frequency of the honk as heard by the motorcyclist is 1412 Hz.
So, the correct answer is “Option C”.
Note:
If the units of the same measurement are given irrelevantly, then convert all the irrelevant units into the same type of units. Here the speed of sound is given in m/ s and speeds of car and motorcyclist are given in km/ hour. So we multiplied the speeds of cars and motorcyclists by $\dfrac{5}{{18}}$ to convert them into m/s. If the units are given in m/s and we have to convert them into km/hour, then multiply the units with $\dfrac{{18}}{5}$.
Formula used:
Apparent frequency of a sound is $f = {f_o}\left( {\dfrac{{v + {v_o}}}{{v + {v_s}}}} \right)$, where v is the velocity of sound, ${v_o}$ is the velocity of the observer, ${v_s}$ is the velocity of the source and ${f_o}$ is the actual frequency.
Complete step by step answer:
We are given that a speeding motorcyclist sees a traffic jam ahead of him and then he slows down to 36km/ hour and then he finds a car moving ahead of him at 18km/ hour is honking at a frequency of 1392 Hz.
We have to find the frequency of the honk sound as heard by him when the speed of sound is 343m/ s.
Here, the motorcyclist is travelling on a motorcycle and another person is travelling in a car.
And both the motorcycle and the car are moving. So the frequency of the sound produced by the car honk will be the apparent frequency.
Apparent frequency can be calculated using $f = {f_o}\left( {\dfrac{{v + {v_o}}}{{v + {v_s}}}} \right)$
Speed of the motorcycle and the car are given in km/ hour. So, convert them into m/ s by multiplying with $\dfrac{5}{{18}}$
$
f = {f_o}\left( {\dfrac{{v + {v_o}}}{{v + {v_s}}}} \right) \\
{f_o} = 1392Hz,v = 343m/s \\
{v_o} = 36km/hour = 36 \times \dfrac{5}{{18}}m/s = 10m/s \\
{v_s} = 18km/hour = 18 \times \dfrac{5}{{18}}m/s = 5m/s \\
\implies f = 1392\left( {\dfrac{{343 + 10}}{{343 + 5}}} \right) \\
\implies f = 1392 \times \dfrac{{353}}{{348}} \\
\therefore f = 1412Hz \\
$
Therefore, the frequency of the honk as heard by the motorcyclist is 1412 Hz.
So, the correct answer is “Option C”.
Note:
If the units of the same measurement are given irrelevantly, then convert all the irrelevant units into the same type of units. Here the speed of sound is given in m/ s and speeds of car and motorcyclist are given in km/ hour. So we multiplied the speeds of cars and motorcyclists by $\dfrac{5}{{18}}$ to convert them into m/s. If the units are given in m/s and we have to convert them into km/hour, then multiply the units with $\dfrac{{18}}{5}$.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE