
Question: A five digit number divisible by 3 is to be formed using the digits 0,1,2,3,4 and 5, without repetition. The total number of ways this can be done, is
A. 216
B. 240
C. 600
D. 3125
Answer
620.7k+ views
Hint: A number to be divisible by 3, the sum of all the digits should be divisible by 3.
In this question, we are supposed to form a five digit number which will be divisible by 3, and the divisibility test of 3 is the sum of digits should be divisible by 3.
Therefore, we are only going to consider 5 digits whose sum will result in a number which will be divisible by 3.
Complete step-by-step answer:
Let us observe the digits given to us, we have 0,1,2,3,4 and 5, to make a five digit number we only need 5 digits out of the given 6 digits,
Case 1: Using digits 0,1,2,4 and 5.
The number of ways in which we can arrange these 5 digits are \[ \Rightarrow 4 \times 4 \times 3 \times 2 \times 1\]
\[ \Rightarrow 96\]
Case 2: Using the digits 1,2,3,4 and 5
The number of ways in which we can arrange these 5 digits are \[ \Rightarrow 5 \times 4 \times 3 \times 2 \times 1\]
\[ \Rightarrow 120\]
Therefore, the total number of cases $= 96+120 = 216$
Therefore, Option A is the correct answer.
Note: Make sure that you do not take 0 in the first place because that will make the number a 4-digit number which will be considered wrong as we are supposed to form a 5-digit number.
In this question, we are supposed to form a five digit number which will be divisible by 3, and the divisibility test of 3 is the sum of digits should be divisible by 3.
Therefore, we are only going to consider 5 digits whose sum will result in a number which will be divisible by 3.
Complete step-by-step answer:
Let us observe the digits given to us, we have 0,1,2,3,4 and 5, to make a five digit number we only need 5 digits out of the given 6 digits,
Case 1: Using digits 0,1,2,4 and 5.
The number of ways in which we can arrange these 5 digits are \[ \Rightarrow 4 \times 4 \times 3 \times 2 \times 1\]
\[ \Rightarrow 96\]
Case 2: Using the digits 1,2,3,4 and 5
The number of ways in which we can arrange these 5 digits are \[ \Rightarrow 5 \times 4 \times 3 \times 2 \times 1\]
\[ \Rightarrow 120\]
Therefore, the total number of cases $= 96+120 = 216$
Therefore, Option A is the correct answer.
Note: Make sure that you do not take 0 in the first place because that will make the number a 4-digit number which will be considered wrong as we are supposed to form a 5-digit number.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

