Answer
Verified
500.7k+ views
Hint- Here, we will be using the general equation for any circle and the distance formula.
The given equations of two circles are ${x^2} + {y^2} = 4 = {2^2} \to {\text{(1)}}$ and ${x^2} + {y^2} - 8x + 12 = 0{\text{ }} \to {\text{(2)}}$
Since, the general equation of a circle with centre ${\text{C}}\left( {a,b} \right)$ and radius $r$ is given by
${\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {r^2}{\text{ }} \to {\text{(3)}}$
Equation (2) can be modified in the same form as equation (3) by using completing the square method.
$
{x^2} - 8x + {4^2} - {4^2} + {y^2} + 12 = 0 \Rightarrow \left[ {{x^2} - 8x + {4^2}} \right] - 16 + {y^2} + 12 = 0 \Rightarrow {\left( {x - 4} \right)^2} + {y^2} = 4 = {2^2} \\
\Rightarrow {\left( {x - 4} \right)^2} + {y^2} = {2^2}{\text{ }} \to (4{\text{)}} \\
$
The above equation (4) represents the equation of second circle whose equation is given as equation (2).
On comparing equations (1) and (3), we get
${a_1} = 0,{\text{ }}{b_1} = 0$ and ${r_1} = 2$ where centre of the first circle whose equation is given by equation (1) is ${{\text{C}}_1}\left( {{a_1} = 0,{b_1} = 0} \right) \Leftrightarrow {{\text{C}}_1}\left( {0,0} \right)$ and radius ${r_1} = 2$.
On comparing equations (3) and (4), we get
${a_2} = 4,{\text{ }}{b_2} = 0$ and ${r_2} = 2$ where centre of the second circle whose equation is given by equation (2) is ${{\text{C}}_2}\left( {{a_2} = 4,{b_2} = 0} \right) \Leftrightarrow {{\text{C}}_2}\left( {4,0} \right)$ and radius is ${r_2} = 2$.
Now, the distance between the centres of two circles is evaluated using distance formula
${\text{d = }}{{\text{C}}_1}{{\text{C}}_2} = \sqrt {{{\left( {{a_2} - {a_1}} \right)}^2} + {{\left( {{b_2} - {b_1}} \right)}^2}} = \sqrt {{{\left( {4 - 0} \right)}^2} + {{\left( {0 - 0} \right)}^2}} = 4$.
Here, ${r_1} + {r_2} = 2 + 2 = 4$
Clearly, ${{\text{C}}_1}{{\text{C}}_2} = {r_1} + {r_2}$ which means that the given two circles are touching each other externally.
Also, in total there are three common tangents which can be drawn to the given two circles which are touching each other externally.
Therefore, option C is correct.
Note- These type of problems are solved by considering the general equation of the circle and then comparing the given equations to find the given circle’s dimensions and then evaluating the centre to centre distance between the given circles.
The given equations of two circles are ${x^2} + {y^2} = 4 = {2^2} \to {\text{(1)}}$ and ${x^2} + {y^2} - 8x + 12 = 0{\text{ }} \to {\text{(2)}}$
Since, the general equation of a circle with centre ${\text{C}}\left( {a,b} \right)$ and radius $r$ is given by
${\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {r^2}{\text{ }} \to {\text{(3)}}$
Equation (2) can be modified in the same form as equation (3) by using completing the square method.
$
{x^2} - 8x + {4^2} - {4^2} + {y^2} + 12 = 0 \Rightarrow \left[ {{x^2} - 8x + {4^2}} \right] - 16 + {y^2} + 12 = 0 \Rightarrow {\left( {x - 4} \right)^2} + {y^2} = 4 = {2^2} \\
\Rightarrow {\left( {x - 4} \right)^2} + {y^2} = {2^2}{\text{ }} \to (4{\text{)}} \\
$
The above equation (4) represents the equation of second circle whose equation is given as equation (2).
On comparing equations (1) and (3), we get
${a_1} = 0,{\text{ }}{b_1} = 0$ and ${r_1} = 2$ where centre of the first circle whose equation is given by equation (1) is ${{\text{C}}_1}\left( {{a_1} = 0,{b_1} = 0} \right) \Leftrightarrow {{\text{C}}_1}\left( {0,0} \right)$ and radius ${r_1} = 2$.
On comparing equations (3) and (4), we get
${a_2} = 4,{\text{ }}{b_2} = 0$ and ${r_2} = 2$ where centre of the second circle whose equation is given by equation (2) is ${{\text{C}}_2}\left( {{a_2} = 4,{b_2} = 0} \right) \Leftrightarrow {{\text{C}}_2}\left( {4,0} \right)$ and radius is ${r_2} = 2$.
Now, the distance between the centres of two circles is evaluated using distance formula
${\text{d = }}{{\text{C}}_1}{{\text{C}}_2} = \sqrt {{{\left( {{a_2} - {a_1}} \right)}^2} + {{\left( {{b_2} - {b_1}} \right)}^2}} = \sqrt {{{\left( {4 - 0} \right)}^2} + {{\left( {0 - 0} \right)}^2}} = 4$.
Here, ${r_1} + {r_2} = 2 + 2 = 4$
Clearly, ${{\text{C}}_1}{{\text{C}}_2} = {r_1} + {r_2}$ which means that the given two circles are touching each other externally.
Also, in total there are three common tangents which can be drawn to the given two circles which are touching each other externally.
Therefore, option C is correct.
Note- These type of problems are solved by considering the general equation of the circle and then comparing the given equations to find the given circle’s dimensions and then evaluating the centre to centre distance between the given circles.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE