Answer
Verified
431.7k+ views
Hint: In the given question, we are required to convert the angle given in degree measure into radian measure. Radian is the SI unit for measuring angles. In order to convert the degree measure into radian measure, multiply the given degree measure with $\left[ {\dfrac{\pi }{{180}}} \right]$ to get the desired result.
Complete step by step answer:
The measure of an angle is controlled by the measure of pivot from the underlying side to the terminal side. In radians, one complete counter clockwise upheaval is $2\pi $and in degrees, one complete counterclockwise upset is $360$degrees. Along these lines, degree measure and radian measure are connected by the conditions:
$2\pi $radians $ = {360^ \circ }$
$\Rightarrow\pi $radians $ = {180^ \circ }$
From the above mentioned equations or results, we get the condition $1$ radian $ = \dfrac{{180}}{\pi }$degrees. This leads us to the standard to change over degree measure to radian measure. To change over from degree to radian, we multiply the degree measure by $\dfrac{\pi }{{180}}$.So, in our question we are given ${330^ \circ }$.Multiplying both sides with ${330^ \circ }$.
${720^ \circ } = \dfrac{{720\pi }}{{180}}$radians
Cancelling the common factors in numerator and denominator, we get,
$ \therefore {720^ \circ } = 4\pi $radians
Therefore, ${720^ \circ }$ in radians equal to $4\pi $ radians.
Note:The radian, indicated by the symbol rad is the SI unit for measuring angles, and is the standard unit of angle measure utilized in numerous zones of arithmetic. The length of an arc of a unit circle is mathematically equivalent to the measurement in radians of the angle that it subtends; one radian is $\dfrac{{180}}{\pi }$ degrees. Don’t forget to Cross-check your answer.
Complete step by step answer:
The measure of an angle is controlled by the measure of pivot from the underlying side to the terminal side. In radians, one complete counter clockwise upheaval is $2\pi $and in degrees, one complete counterclockwise upset is $360$degrees. Along these lines, degree measure and radian measure are connected by the conditions:
$2\pi $radians $ = {360^ \circ }$
$\Rightarrow\pi $radians $ = {180^ \circ }$
From the above mentioned equations or results, we get the condition $1$ radian $ = \dfrac{{180}}{\pi }$degrees. This leads us to the standard to change over degree measure to radian measure. To change over from degree to radian, we multiply the degree measure by $\dfrac{\pi }{{180}}$.So, in our question we are given ${330^ \circ }$.Multiplying both sides with ${330^ \circ }$.
${720^ \circ } = \dfrac{{720\pi }}{{180}}$radians
Cancelling the common factors in numerator and denominator, we get,
$ \therefore {720^ \circ } = 4\pi $radians
Therefore, ${720^ \circ }$ in radians equal to $4\pi $ radians.
Note:The radian, indicated by the symbol rad is the SI unit for measuring angles, and is the standard unit of angle measure utilized in numerous zones of arithmetic. The length of an arc of a unit circle is mathematically equivalent to the measurement in radians of the angle that it subtends; one radian is $\dfrac{{180}}{\pi }$ degrees. Don’t forget to Cross-check your answer.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE