Answer
Verified
441k+ views
Hint:The direction of the rain gets affected by the wind speed and the boy should hold the umbrella opposite to the direction of the resultant of the velocity of the rain and the velocity of the wind.
Complete step by step answer:
From the given question, we know that the velocity of rain vertically
downwards,${\overrightarrow v _r} = - 35\,\mathop {\rm{j}}\limits^ \wedge
{\rm{m}}{{\rm{s}}^{ - 1}}$ and the velocity of the wind, ${\overrightarrow v _w} = - 12\mathop
{\rm{i}}\limits^ \wedge \;{\rm{m}}{{\rm{s}}^{ - 1}}$
The rain will drop in the direction of the resultant velocity of the rain and the velocity of the wind.
We know that the direction of the resultant is calculated as,
$\tan \theta = \dfrac{{{v_w}}}{{{v_r}}}$
Substitute the given values in the above equation, we get,
$
\tan \theta = \dfrac{{12}}{{35}}\\
\theta = {\tan ^{ - 1}}\left( {\dfrac{{12}}{{35}}} \right)\\
= 18.92^\circ
$
Thus, a boy waiting at a bus stop holds his umbrella in the opposite direction of the resultant
velocity of the rain in order to protect from rain drops and he must hold the umbrella in the direction 18.92 degree south of west.
Note:There is another method to calculate the direction of the resultant of the rain that is $\left( {90^\circ - 18.92^\circ } \right) = 71.08^\circ $ or it can be calculated as $\tan \theta = \dfrac{{{v_r}}}{{{v_w}}}$ and in this case, the boy must be hold the umbrella in the direction 71.08 degree west of south. Be extra careful while determining the direction of the resultant rain drops, there is a high chance of making a mistake.
Complete step by step answer:
From the given question, we know that the velocity of rain vertically
downwards,${\overrightarrow v _r} = - 35\,\mathop {\rm{j}}\limits^ \wedge
{\rm{m}}{{\rm{s}}^{ - 1}}$ and the velocity of the wind, ${\overrightarrow v _w} = - 12\mathop
{\rm{i}}\limits^ \wedge \;{\rm{m}}{{\rm{s}}^{ - 1}}$
The rain will drop in the direction of the resultant velocity of the rain and the velocity of the wind.
We know that the direction of the resultant is calculated as,
$\tan \theta = \dfrac{{{v_w}}}{{{v_r}}}$
Substitute the given values in the above equation, we get,
$
\tan \theta = \dfrac{{12}}{{35}}\\
\theta = {\tan ^{ - 1}}\left( {\dfrac{{12}}{{35}}} \right)\\
= 18.92^\circ
$
Thus, a boy waiting at a bus stop holds his umbrella in the opposite direction of the resultant
velocity of the rain in order to protect from rain drops and he must hold the umbrella in the direction 18.92 degree south of west.
Note:There is another method to calculate the direction of the resultant of the rain that is $\left( {90^\circ - 18.92^\circ } \right) = 71.08^\circ $ or it can be calculated as $\tan \theta = \dfrac{{{v_r}}}{{{v_w}}}$ and in this case, the boy must be hold the umbrella in the direction 71.08 degree west of south. Be extra careful while determining the direction of the resultant rain drops, there is a high chance of making a mistake.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE