Answer
Verified
450.9k+ views
Hint: First simplify the given equation by substituting $ x = \tan \theta $ . After simplification, use the range of $ \sin \theta $ to find the range of the given expression. You can use the fact that $ {\tan ^{ - 1}}x $ is an increasing function. So the inequality will not change.
Complete step-by-step answer:
The given equation is
$ \Rightarrow y = {\tan ^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right) $
To simplify this equation, put $ x = \tan \theta $ . Then
$ \dfrac{{2x}}{{1 + {x^2}}} = \dfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }} $
We have a formula,
$ \dfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }} = \sin 2\theta $
By using this formula, we can write
$ \dfrac{{2x}}{{1 + {x^2}}} = \sin 2\theta $
Now, we know that the range of $ \sin 2\theta $ is $ \left[ { - 1,1} \right] $ . Because the maximum value of $ \sin 2\theta $ is 1 and its minimum value is -1. Also it is a continuous function. So it takes all the values between -1 and 1.
Thus, $ \dfrac{{2x}}{{1 + {x^2}}} \in [ - 1,1] $
Now, by applying $ {\tan ^{ - 1}} $ to both the sides. And knowing that $ {\tan ^{ - 1}} $ is an increasing function. So the inequality in intervals will not change.
$ \therefore {\tan ^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right) \in \left[ {{{\tan }^{ - 1}}( - 1),{{\tan }^{ - 1}}(1)} \right] $
By using the property, $ {\tan ^{ - 1}}( - x) = {-\tan ^{ - 1}}x $ , we can write
$ = \left[ { - {{\tan }^{ - 1}}1,{{\tan }^{ - 1}}1} \right] $
We know that, $ {\tan ^{ - 1}}1 = \dfrac{\pi }{4} $
Thus, we get the range as
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right) \in \left[ { - \dfrac{\pi }{4},\dfrac{\pi }{4}} \right] $
Therefore, from the above explanation, the correct answer is, option (A) $ \left[ { - \dfrac{\pi }{4},\dfrac{\pi }{4}} \right] $
So, the correct answer is “Option A”.
Note: To solve this question, you need to know the trigonometric formulae. Then only it would click you that you can simplify the equation in terms of $ \sin \theta $ . The key point here is to know the range of the sine function and know that the inequality does not change when you apply an increasing function to it. If you check the graph of $ {\tan ^{ - 1}}x $ . You will observe that, it is an increasing function.
Complete step-by-step answer:
The given equation is
$ \Rightarrow y = {\tan ^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right) $
To simplify this equation, put $ x = \tan \theta $ . Then
$ \dfrac{{2x}}{{1 + {x^2}}} = \dfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }} $
We have a formula,
$ \dfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }} = \sin 2\theta $
By using this formula, we can write
$ \dfrac{{2x}}{{1 + {x^2}}} = \sin 2\theta $
Now, we know that the range of $ \sin 2\theta $ is $ \left[ { - 1,1} \right] $ . Because the maximum value of $ \sin 2\theta $ is 1 and its minimum value is -1. Also it is a continuous function. So it takes all the values between -1 and 1.
Thus, $ \dfrac{{2x}}{{1 + {x^2}}} \in [ - 1,1] $
Now, by applying $ {\tan ^{ - 1}} $ to both the sides. And knowing that $ {\tan ^{ - 1}} $ is an increasing function. So the inequality in intervals will not change.
$ \therefore {\tan ^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right) \in \left[ {{{\tan }^{ - 1}}( - 1),{{\tan }^{ - 1}}(1)} \right] $
By using the property, $ {\tan ^{ - 1}}( - x) = {-\tan ^{ - 1}}x $ , we can write
$ = \left[ { - {{\tan }^{ - 1}}1,{{\tan }^{ - 1}}1} \right] $
We know that, $ {\tan ^{ - 1}}1 = \dfrac{\pi }{4} $
Thus, we get the range as
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right) \in \left[ { - \dfrac{\pi }{4},\dfrac{\pi }{4}} \right] $
Therefore, from the above explanation, the correct answer is, option (A) $ \left[ { - \dfrac{\pi }{4},\dfrac{\pi }{4}} \right] $
So, the correct answer is “Option A”.
Note: To solve this question, you need to know the trigonometric formulae. Then only it would click you that you can simplify the equation in terms of $ \sin \theta $ . The key point here is to know the range of the sine function and know that the inequality does not change when you apply an increasing function to it. If you check the graph of $ {\tan ^{ - 1}}x $ . You will observe that, it is an increasing function.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE