Answer
Verified
460.8k+ views
Hint: To solve the question, the first step that we will do is to rationalize the given expression. This involves multiplying both numerator and denominator by the same irrational number. This results in easy simplification further.
Complete step-by-step solution:
The given expression is:
\[\dfrac{{\sqrt 6 + \sqrt 3 }}{{\sqrt 6 - \sqrt 3 }}\]
Here we will use identity to rationalize the denominator of the given expression.
The identity is;
$(a+b)(a-b)={a^2} - {b^2}$.
Here the denominator is \[\sqrt 6 - \sqrt 3 \] which is of the form $(a-b)$. So, we will multiply both numerator and denominator by \[\sqrt 6 + \sqrt 3 \] to get the form of the above identity in the denominator.
So, on multiplying \[\sqrt 6 + \sqrt 3 \] with numerator and denominator we get,
\[\dfrac{{(\sqrt 6 + \sqrt 3 )(\sqrt 6 + \sqrt 3 )}}{{(\sqrt 6 - \sqrt 3 )(\sqrt 6 + \sqrt 3 )}} = \dfrac{{{{(\sqrt 6 + \sqrt 3 )}^2}}}{{{{(\sqrt 6 )}^2} - {{(\sqrt 3 )}^2}}}\]
Using the identity (a+b)(a-b)=${a^2} - {b^2}$ and ${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$, the above expression can be simplified as:
\[\dfrac{{6 + 3 + 2\sqrt {18} }}{{6 - 3}} = \dfrac{{9 + 2\sqrt {18} }}{3} = \dfrac{{9 + 2\sqrt {9 \times 2} }}{3} = \dfrac{{3(3 + 2\sqrt 2 )}}{3} = 3 + 2\sqrt 2 \]
Therefore, the simplified expression is \[3 + 2\sqrt 2 \].
Note: You should know about rationalization. It is the process of eliminating a radical or imaginary number from the denominator of an algebraic function by multiplying the same factor in the numerator and denominator. You should know that $\sqrt a \times \sqrt b = \sqrt {ab}$ where a, b are positive numbers.
Complete step-by-step solution:
The given expression is:
\[\dfrac{{\sqrt 6 + \sqrt 3 }}{{\sqrt 6 - \sqrt 3 }}\]
Here we will use identity to rationalize the denominator of the given expression.
The identity is;
$(a+b)(a-b)={a^2} - {b^2}$.
Here the denominator is \[\sqrt 6 - \sqrt 3 \] which is of the form $(a-b)$. So, we will multiply both numerator and denominator by \[\sqrt 6 + \sqrt 3 \] to get the form of the above identity in the denominator.
So, on multiplying \[\sqrt 6 + \sqrt 3 \] with numerator and denominator we get,
\[\dfrac{{(\sqrt 6 + \sqrt 3 )(\sqrt 6 + \sqrt 3 )}}{{(\sqrt 6 - \sqrt 3 )(\sqrt 6 + \sqrt 3 )}} = \dfrac{{{{(\sqrt 6 + \sqrt 3 )}^2}}}{{{{(\sqrt 6 )}^2} - {{(\sqrt 3 )}^2}}}\]
Using the identity (a+b)(a-b)=${a^2} - {b^2}$ and ${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$, the above expression can be simplified as:
\[\dfrac{{6 + 3 + 2\sqrt {18} }}{{6 - 3}} = \dfrac{{9 + 2\sqrt {18} }}{3} = \dfrac{{9 + 2\sqrt {9 \times 2} }}{3} = \dfrac{{3(3 + 2\sqrt 2 )}}{3} = 3 + 2\sqrt 2 \]
Therefore, the simplified expression is \[3 + 2\sqrt 2 \].
Note: You should know about rationalization. It is the process of eliminating a radical or imaginary number from the denominator of an algebraic function by multiplying the same factor in the numerator and denominator. You should know that $\sqrt a \times \sqrt b = \sqrt {ab}$ where a, b are positive numbers.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE