Answer
Verified
429.9k+ views
Hint: In elementary algebra, root rationalisation is a process by which radicals in the denominator or numerator of an algebraic fraction are eliminated. To rationalize a term we need to multiply it with a term such that the square root, cube root etc is eliminated. We multiply with the same term in denominator and numerator to maintain the original value of the fraction which is to be rationalized.
Complete step by step answer:
Here we have the fraction \[\sqrt{\dfrac{\cos x}{\sin x}}\] where we need to rationalize the numerator.
In fraction we have two term numerator and denominator. The term above the line is called numerator and the term below the line is called denominator. For example in the fraction
\[\dfrac{2}{3}\], the above term that is 2 is numerator and the below term, 3, is the denominator.
Thus we can clearly see in the term \[\sqrt{\dfrac{\cos x}{\sin x}}\] the numerator is \[\sqrt{\cos x}\] and denominator is \[\sqrt{\sin x}\]
Now to rationalize the numerator we need to multiply it with a term such that the square root is removed. As we know multiplying two same square root terms result in same term , we will multiply both denominator and numerator by \[\sqrt{\cos x}\]
\[\Rightarrow \sqrt{\dfrac{\cos x}{\sin x}}\left( \dfrac{\sqrt{\cos x}}{\sqrt{\cos x}} \right)\]
(We know that \[\dfrac{\sqrt{\cos x}}{\sqrt{\cos x}}=1\] and multiplying anything with 1 will not alter its value)
\[\Rightarrow \sqrt{\dfrac{\cos x(\cos x)}{\sin x(\cos x)}}\]
\[\Rightarrow \sqrt{\dfrac{{{(\cos x)}^{2}}}{\sin x(\cos x)}}\]
\[\Rightarrow \dfrac{\sqrt{{{(\cos x)}^{2}}}}{\sqrt{\sin x(\cos x)}}\] , (by using the property \[\Rightarrow \sqrt{\dfrac{a}{b}}\Leftrightarrow \dfrac{\sqrt{a}}{\sqrt{b}}\] )
\[\Rightarrow \dfrac{(\cos x)}{\sqrt{\sin x\cos x}}\] , (by using the property \[\Rightarrow \sqrt{{{a}^{2}}}=a\] )
Hence the rationalized term required is \[\dfrac{(\cos x)}{\sqrt{\sin x\cos x}}\] , (only numerator rationalized).
Note: The rationalization of a fraction or a term is done to simplify it and to find out the actual value of the term in a more simple form. Generally the rationalization is done for the denominator, unlike in the above question, to make the denominator the same/rational in case there are multiple terms in an expression.
Complete step by step answer:
Here we have the fraction \[\sqrt{\dfrac{\cos x}{\sin x}}\] where we need to rationalize the numerator.
In fraction we have two term numerator and denominator. The term above the line is called numerator and the term below the line is called denominator. For example in the fraction
\[\dfrac{2}{3}\], the above term that is 2 is numerator and the below term, 3, is the denominator.
Thus we can clearly see in the term \[\sqrt{\dfrac{\cos x}{\sin x}}\] the numerator is \[\sqrt{\cos x}\] and denominator is \[\sqrt{\sin x}\]
Now to rationalize the numerator we need to multiply it with a term such that the square root is removed. As we know multiplying two same square root terms result in same term , we will multiply both denominator and numerator by \[\sqrt{\cos x}\]
\[\Rightarrow \sqrt{\dfrac{\cos x}{\sin x}}\left( \dfrac{\sqrt{\cos x}}{\sqrt{\cos x}} \right)\]
(We know that \[\dfrac{\sqrt{\cos x}}{\sqrt{\cos x}}=1\] and multiplying anything with 1 will not alter its value)
\[\Rightarrow \sqrt{\dfrac{\cos x(\cos x)}{\sin x(\cos x)}}\]
\[\Rightarrow \sqrt{\dfrac{{{(\cos x)}^{2}}}{\sin x(\cos x)}}\]
\[\Rightarrow \dfrac{\sqrt{{{(\cos x)}^{2}}}}{\sqrt{\sin x(\cos x)}}\] , (by using the property \[\Rightarrow \sqrt{\dfrac{a}{b}}\Leftrightarrow \dfrac{\sqrt{a}}{\sqrt{b}}\] )
\[\Rightarrow \dfrac{(\cos x)}{\sqrt{\sin x\cos x}}\] , (by using the property \[\Rightarrow \sqrt{{{a}^{2}}}=a\] )
Hence the rationalized term required is \[\dfrac{(\cos x)}{\sqrt{\sin x\cos x}}\] , (only numerator rationalized).
Note: The rationalization of a fraction or a term is done to simplify it and to find out the actual value of the term in a more simple form. Generally the rationalization is done for the denominator, unlike in the above question, to make the denominator the same/rational in case there are multiple terms in an expression.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE