
How do you rationalize the numerator for \[\sqrt{\dfrac{\cos x}{\sin x}}\]?
Answer
539.1k+ views
Hint: In elementary algebra, root rationalisation is a process by which radicals in the denominator or numerator of an algebraic fraction are eliminated. To rationalize a term we need to multiply it with a term such that the square root, cube root etc is eliminated. We multiply with the same term in denominator and numerator to maintain the original value of the fraction which is to be rationalized.
Complete step by step answer:
Here we have the fraction \[\sqrt{\dfrac{\cos x}{\sin x}}\] where we need to rationalize the numerator.
In fraction we have two term numerator and denominator. The term above the line is called numerator and the term below the line is called denominator. For example in the fraction
\[\dfrac{2}{3}\], the above term that is 2 is numerator and the below term, 3, is the denominator.
Thus we can clearly see in the term \[\sqrt{\dfrac{\cos x}{\sin x}}\] the numerator is \[\sqrt{\cos x}\] and denominator is \[\sqrt{\sin x}\]
Now to rationalize the numerator we need to multiply it with a term such that the square root is removed. As we know multiplying two same square root terms result in same term , we will multiply both denominator and numerator by \[\sqrt{\cos x}\]
\[\Rightarrow \sqrt{\dfrac{\cos x}{\sin x}}\left( \dfrac{\sqrt{\cos x}}{\sqrt{\cos x}} \right)\]
(We know that \[\dfrac{\sqrt{\cos x}}{\sqrt{\cos x}}=1\] and multiplying anything with 1 will not alter its value)
\[\Rightarrow \sqrt{\dfrac{\cos x(\cos x)}{\sin x(\cos x)}}\]
\[\Rightarrow \sqrt{\dfrac{{{(\cos x)}^{2}}}{\sin x(\cos x)}}\]
\[\Rightarrow \dfrac{\sqrt{{{(\cos x)}^{2}}}}{\sqrt{\sin x(\cos x)}}\] , (by using the property \[\Rightarrow \sqrt{\dfrac{a}{b}}\Leftrightarrow \dfrac{\sqrt{a}}{\sqrt{b}}\] )
\[\Rightarrow \dfrac{(\cos x)}{\sqrt{\sin x\cos x}}\] , (by using the property \[\Rightarrow \sqrt{{{a}^{2}}}=a\] )
Hence the rationalized term required is \[\dfrac{(\cos x)}{\sqrt{\sin x\cos x}}\] , (only numerator rationalized).
Note: The rationalization of a fraction or a term is done to simplify it and to find out the actual value of the term in a more simple form. Generally the rationalization is done for the denominator, unlike in the above question, to make the denominator the same/rational in case there are multiple terms in an expression.
Complete step by step answer:
Here we have the fraction \[\sqrt{\dfrac{\cos x}{\sin x}}\] where we need to rationalize the numerator.
In fraction we have two term numerator and denominator. The term above the line is called numerator and the term below the line is called denominator. For example in the fraction
\[\dfrac{2}{3}\], the above term that is 2 is numerator and the below term, 3, is the denominator.
Thus we can clearly see in the term \[\sqrt{\dfrac{\cos x}{\sin x}}\] the numerator is \[\sqrt{\cos x}\] and denominator is \[\sqrt{\sin x}\]
Now to rationalize the numerator we need to multiply it with a term such that the square root is removed. As we know multiplying two same square root terms result in same term , we will multiply both denominator and numerator by \[\sqrt{\cos x}\]
\[\Rightarrow \sqrt{\dfrac{\cos x}{\sin x}}\left( \dfrac{\sqrt{\cos x}}{\sqrt{\cos x}} \right)\]
(We know that \[\dfrac{\sqrt{\cos x}}{\sqrt{\cos x}}=1\] and multiplying anything with 1 will not alter its value)
\[\Rightarrow \sqrt{\dfrac{\cos x(\cos x)}{\sin x(\cos x)}}\]
\[\Rightarrow \sqrt{\dfrac{{{(\cos x)}^{2}}}{\sin x(\cos x)}}\]
\[\Rightarrow \dfrac{\sqrt{{{(\cos x)}^{2}}}}{\sqrt{\sin x(\cos x)}}\] , (by using the property \[\Rightarrow \sqrt{\dfrac{a}{b}}\Leftrightarrow \dfrac{\sqrt{a}}{\sqrt{b}}\] )
\[\Rightarrow \dfrac{(\cos x)}{\sqrt{\sin x\cos x}}\] , (by using the property \[\Rightarrow \sqrt{{{a}^{2}}}=a\] )
Hence the rationalized term required is \[\dfrac{(\cos x)}{\sqrt{\sin x\cos x}}\] , (only numerator rationalized).
Note: The rationalization of a fraction or a term is done to simplify it and to find out the actual value of the term in a more simple form. Generally the rationalization is done for the denominator, unlike in the above question, to make the denominator the same/rational in case there are multiple terms in an expression.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Write a letter to the principal requesting him to grant class 10 english CBSE

Which of the following does not have a fundamental class 10 physics CBSE

State and prove the Pythagoras theorem-class-10-maths-CBSE

What is the full form of POSCO class 10 social science CBSE

State BPT theorem and prove it class 10 maths CBSE

A Gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE

