Answer
Verified
460.8k+ views
Hint: In this question, we will use the formula for finding the probability which is given as:
$P(E) = \dfrac{{{\text{Total number of favorable events}}}}{{{\text{Total number of possible events}}}}$. First we will calculate the total number of possible events. For each case, we will find the number of favorable events and then use the formula.
Complete step-by-step answer:
In a deck of 52 cards, we are removing 2 red queens (one of hearts and other of diamond) and 2 black jacks (one of spade and other of club) are also being removed. Total card removed = 4.
So, cards remaining in deck = 48
Or we can say n(s) = 48 = Total number of possible events.
Now we need to find probability that 1 card is drawn from the remaining cards after reshuffling is:
(a) a king
There are 4 kings in a pack of 52 cards.
$\therefore $n(${E_1}$) = 4 = total number of favorable events.
Let ${E_1}$be the event that the card drawn is a king.
$P({E_1}) = \dfrac{{{\text{Total number of favorable events}}}}{{{\text{Total number of possible events}}}} = \dfrac{{n({E_1})}}{{n(s)}} = \dfrac{4}{{48}} = \dfrac{1}{{12}}$.
(b) of red color
There are in total 26 red cards, 13 of hearts and 13 of diamonds but we have removed 2 red queens therefore, the total remaining red cards is 24.
Now let${E_2}$ be the probability that the drawn card is red.
$\therefore $ n(${E_2}$)=24
$P({E_2}) = \dfrac{{n({E_2})}}{{n(s)}} = \dfrac{{24}}{{48}} = \dfrac{1}{2}$.
(c) a face card
There are in total 12 face cards. Now it is being told that we have removed 2 queens and 2 jacks which are also face cards hence the remaining face cards will be 8.
Now, let${E_3}$be the event of obtaining a face card while making a draw.
$\therefore $ n(${E_3}$)=8
$P({E_3}) = \dfrac{{n({E_3})}}{{n(s)}} = \dfrac{8}{{48}} = \dfrac{1}{6}$.
(c) a queen
Number of queens in a deck of 52 cards = 4 but 2 queens have been removed.
$\therefore $ n(${E_4}$)=2, where ‘${E_4}$’ is the event of occurring a queen.
$P({E_4}) = \dfrac{{n({E_4})}}{{n(s)}} = \dfrac{2}{{48}} = \dfrac{1}{{24}}$.
Note: Solving such probability questions simply requires understanding of what is being removed and how many cards are being left behind. Always remember there are only 12 face cards and ace is not a face card. We need to remember that there are in total 4 houses that are heart, diamond, and spade and club each having 13 cards in them.
$P(E) = \dfrac{{{\text{Total number of favorable events}}}}{{{\text{Total number of possible events}}}}$. First we will calculate the total number of possible events. For each case, we will find the number of favorable events and then use the formula.
Complete step-by-step answer:
In a deck of 52 cards, we are removing 2 red queens (one of hearts and other of diamond) and 2 black jacks (one of spade and other of club) are also being removed. Total card removed = 4.
So, cards remaining in deck = 48
Or we can say n(s) = 48 = Total number of possible events.
Now we need to find probability that 1 card is drawn from the remaining cards after reshuffling is:
(a) a king
There are 4 kings in a pack of 52 cards.
$\therefore $n(${E_1}$) = 4 = total number of favorable events.
Let ${E_1}$be the event that the card drawn is a king.
$P({E_1}) = \dfrac{{{\text{Total number of favorable events}}}}{{{\text{Total number of possible events}}}} = \dfrac{{n({E_1})}}{{n(s)}} = \dfrac{4}{{48}} = \dfrac{1}{{12}}$.
(b) of red color
There are in total 26 red cards, 13 of hearts and 13 of diamonds but we have removed 2 red queens therefore, the total remaining red cards is 24.
Now let${E_2}$ be the probability that the drawn card is red.
$\therefore $ n(${E_2}$)=24
$P({E_2}) = \dfrac{{n({E_2})}}{{n(s)}} = \dfrac{{24}}{{48}} = \dfrac{1}{2}$.
(c) a face card
There are in total 12 face cards. Now it is being told that we have removed 2 queens and 2 jacks which are also face cards hence the remaining face cards will be 8.
Now, let${E_3}$be the event of obtaining a face card while making a draw.
$\therefore $ n(${E_3}$)=8
$P({E_3}) = \dfrac{{n({E_3})}}{{n(s)}} = \dfrac{8}{{48}} = \dfrac{1}{6}$.
(c) a queen
Number of queens in a deck of 52 cards = 4 but 2 queens have been removed.
$\therefore $ n(${E_4}$)=2, where ‘${E_4}$’ is the event of occurring a queen.
$P({E_4}) = \dfrac{{n({E_4})}}{{n(s)}} = \dfrac{2}{{48}} = \dfrac{1}{{24}}$.
Note: Solving such probability questions simply requires understanding of what is being removed and how many cards are being left behind. Always remember there are only 12 face cards and ace is not a face card. We need to remember that there are in total 4 houses that are heart, diamond, and spade and club each having 13 cards in them.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE