Answer
Verified
460.8k+ views
Hint: We solve for selection of children using a method of combination. Write initials of each couple as indication to the number of their sons. Count total number of children. Choose a pair of children from each collection of sons by different couples.
* Combination method helps us to find number of ways to choose r values from n values using the formula \[^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\]where factorial of a number opens as \[n! = n.(n - 1).(n - 2)....3.2.1\]
Complete step-by-step answer:
We are given 4 persons Rekha, Shivram, Varsha nad Ajoy
We are given Rekha and Shivram had 4 sons, Varsha and Ajoy had 4 sons, Varsha and Shivram had 3 sons and Rekha and Ajoy had 3 sons.
Let us denote each of them by initials of their name, i.e.
Rekha-R; Shivram-S; Varsha-V and Ajoy-A
From each couple we write number of sons.
\[R + S = 4\] … (1)
\[V + A = 4\] … (2)
\[V + S = 3\] … (3)
\[R + A = 3\] … (4)
Total number of children\[ = (R + S) + (V + A) + (V + S) + (R + A)\]
\[ \Rightarrow \]Total number of children\[ = 4 + 4 + 3 + 3\]
\[ \Rightarrow \]Total number of children\[ = 14\] … (5)
We have to choose 8 children from 14 children in such a way that each person has equal number of sons in the selection.
If we choose 2 children from each set of children from equations (1), (2), (3) and (4) we will have total 8 children from 4 couples. In this way each of them will have equal number of children in the selection.
From equation (1):
We choose 2 children from 4 children.
Put \[n = 4,r = 2\]in formula of combination.
\[ \Rightarrow \]Number of ways to choose 2 children out of 4 children from equation (1) \[{ = ^4}{C_2}\]
Solve using the expansion of combination formula i.e.\[^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\]
\[{ \Rightarrow ^4}{C_2} = \dfrac{{4!}}{{(4 - 2)!2!}}\]
\[{ \Rightarrow ^4}{C_2} = \dfrac{{4!}}{{2!2!}}\]
Open the factorial in the numerator as \[4! = 4 \times 3 \times 2!\]
\[{ \Rightarrow ^4}{C_2} = \dfrac{{4 \times 3 \times 2!}}{{2!2!}}\]
Cancel same terms from numerator and denominator.
\[{ \Rightarrow ^4}{C_2} = \dfrac{{4 \times 3}}{{2!}}\]
Write \[2! = 2 \times 1\]in the denominator.
\[{ \Rightarrow ^4}{C_2} = \dfrac{{4 \times 3}}{{2 \times 1}}\]
Cancel same terms from numerator and denominator.
\[{ \Rightarrow ^4}{C_2} = 2 \times 3\]
\[{ \Rightarrow ^4}{C_2} = 6\] … (6)
From equation (2):
We choose 2 children from 4 children.
Put \[n = 4,r = 2\]in formula of combination.
\[ \Rightarrow \]Number of ways to choose 2 children out of 4 children from equation (2) \[{ = ^4}{C_2}\]
Solve using the expansion of combination formula i.e.\[^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\]
\[{ \Rightarrow ^4}{C_2} = \dfrac{{4!}}{{(4 - 2)!2!}}\]
\[{ \Rightarrow ^4}{C_2} = \dfrac{{4!}}{{2!2!}}\]
Open the factorial in the numerator as \[4! = 4 \times 3 \times 2!\]
\[{ \Rightarrow ^4}{C_2} = \dfrac{{4 \times 3 \times 2!}}{{2!2!}}\]
Cancel same terms from numerator and denominator.
\[{ \Rightarrow ^4}{C_2} = \dfrac{{4 \times 3}}{{2!}}\]
Write \[2! = 2 \times 1\]in the denominator.
\[{ \Rightarrow ^4}{C_2} = \dfrac{{4 \times 3}}{{2 \times 1}}\]
Cancel same terms from numerator and denominator.
\[{ \Rightarrow ^4}{C_2} = 2 \times 3\]
\[{ \Rightarrow ^4}{C_2} = 6\] … (7)
From equation (3):
We choose 2 children from 3 children.
Put \[n = 3,r = 2\]in formula of combination.
\[ \Rightarrow \]Number of ways to choose 2 children out of 3 children from equation (3) \[{ = ^3}{C_2}\]
Solve using the expansion of combination formula i.e.\[^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\]
\[{ \Rightarrow ^3}{C_2} = \dfrac{{3!}}{{(3 - 2)!2!}}\]
\[{ \Rightarrow ^3}{C_2} = \dfrac{{3!}}{{1!2!}}\]
Open the factorial in the numerator as \[3! = 3 \times 2!\]
\[{ \Rightarrow ^3}{C_2} = \dfrac{{3 \times 2!}}{{1!2!}}\]
Cancel same terms from numerator and denominator.
\[{ \Rightarrow ^3}{C_2} = 3\] … (8)
From equation (3):
We choose 2 children from 3 children.
Put \[n = 3,r = 2\]in formula of combination.
\[ \Rightarrow \]Number of ways to choose 2 children out of 3 children from equation (4) \[{ = ^3}{C_2}\]
Solve using the expansion of combination formula i.e.\[^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\]
\[{ \Rightarrow ^3}{C_2} = \dfrac{{3!}}{{(3 - 2)!2!}}\]
\[{ \Rightarrow ^3}{C_2} = \dfrac{{3!}}{{1!2!}}\]
Open the factorial in the numerator as \[3! = 3 \times 2!\]
\[{ \Rightarrow ^3}{C_2} = \dfrac{{3 \times 2!}}{{1!2!}}\]
Cancel the same terms from numerator and denominator.
\[{ \Rightarrow ^3}{C_2} = 3\] … (9)
Now selection of 8 children from 14 children is given by the product of equations (6), (7), (8) and (9)
Number of ways of selection \[{ = ^4}{C_2}{ \times ^4}{C_2}{ \times ^3}{C_2}{ \times ^3}{C_2}\]
Substitute the values from equations (6), (7), (8) and (9)
\[ \Rightarrow \]Number of ways of selection \[ = 6 \times 6 \times 3 \times 3\]
\[ \Rightarrow \]Number of ways of selection \[ = 324\]
Number of ways of selection of 8 children from 14 children is 324.
Note: Students might solve for the selection by substituting the value of n as 14 and r as 8 directly into the formula for combinations. This is the wrong process as the value obtained from this will be the number of ways of selection of 8 children from 14 children with no condition. So it will have all combinations and that may not have equal numbers of children for each person.
* Combination method helps us to find number of ways to choose r values from n values using the formula \[^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\]where factorial of a number opens as \[n! = n.(n - 1).(n - 2)....3.2.1\]
Complete step-by-step answer:
We are given 4 persons Rekha, Shivram, Varsha nad Ajoy
We are given Rekha and Shivram had 4 sons, Varsha and Ajoy had 4 sons, Varsha and Shivram had 3 sons and Rekha and Ajoy had 3 sons.
Let us denote each of them by initials of their name, i.e.
Rekha-R; Shivram-S; Varsha-V and Ajoy-A
From each couple we write number of sons.
\[R + S = 4\] … (1)
\[V + A = 4\] … (2)
\[V + S = 3\] … (3)
\[R + A = 3\] … (4)
Total number of children\[ = (R + S) + (V + A) + (V + S) + (R + A)\]
\[ \Rightarrow \]Total number of children\[ = 4 + 4 + 3 + 3\]
\[ \Rightarrow \]Total number of children\[ = 14\] … (5)
We have to choose 8 children from 14 children in such a way that each person has equal number of sons in the selection.
If we choose 2 children from each set of children from equations (1), (2), (3) and (4) we will have total 8 children from 4 couples. In this way each of them will have equal number of children in the selection.
From equation (1):
We choose 2 children from 4 children.
Put \[n = 4,r = 2\]in formula of combination.
\[ \Rightarrow \]Number of ways to choose 2 children out of 4 children from equation (1) \[{ = ^4}{C_2}\]
Solve using the expansion of combination formula i.e.\[^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\]
\[{ \Rightarrow ^4}{C_2} = \dfrac{{4!}}{{(4 - 2)!2!}}\]
\[{ \Rightarrow ^4}{C_2} = \dfrac{{4!}}{{2!2!}}\]
Open the factorial in the numerator as \[4! = 4 \times 3 \times 2!\]
\[{ \Rightarrow ^4}{C_2} = \dfrac{{4 \times 3 \times 2!}}{{2!2!}}\]
Cancel same terms from numerator and denominator.
\[{ \Rightarrow ^4}{C_2} = \dfrac{{4 \times 3}}{{2!}}\]
Write \[2! = 2 \times 1\]in the denominator.
\[{ \Rightarrow ^4}{C_2} = \dfrac{{4 \times 3}}{{2 \times 1}}\]
Cancel same terms from numerator and denominator.
\[{ \Rightarrow ^4}{C_2} = 2 \times 3\]
\[{ \Rightarrow ^4}{C_2} = 6\] … (6)
From equation (2):
We choose 2 children from 4 children.
Put \[n = 4,r = 2\]in formula of combination.
\[ \Rightarrow \]Number of ways to choose 2 children out of 4 children from equation (2) \[{ = ^4}{C_2}\]
Solve using the expansion of combination formula i.e.\[^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\]
\[{ \Rightarrow ^4}{C_2} = \dfrac{{4!}}{{(4 - 2)!2!}}\]
\[{ \Rightarrow ^4}{C_2} = \dfrac{{4!}}{{2!2!}}\]
Open the factorial in the numerator as \[4! = 4 \times 3 \times 2!\]
\[{ \Rightarrow ^4}{C_2} = \dfrac{{4 \times 3 \times 2!}}{{2!2!}}\]
Cancel same terms from numerator and denominator.
\[{ \Rightarrow ^4}{C_2} = \dfrac{{4 \times 3}}{{2!}}\]
Write \[2! = 2 \times 1\]in the denominator.
\[{ \Rightarrow ^4}{C_2} = \dfrac{{4 \times 3}}{{2 \times 1}}\]
Cancel same terms from numerator and denominator.
\[{ \Rightarrow ^4}{C_2} = 2 \times 3\]
\[{ \Rightarrow ^4}{C_2} = 6\] … (7)
From equation (3):
We choose 2 children from 3 children.
Put \[n = 3,r = 2\]in formula of combination.
\[ \Rightarrow \]Number of ways to choose 2 children out of 3 children from equation (3) \[{ = ^3}{C_2}\]
Solve using the expansion of combination formula i.e.\[^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\]
\[{ \Rightarrow ^3}{C_2} = \dfrac{{3!}}{{(3 - 2)!2!}}\]
\[{ \Rightarrow ^3}{C_2} = \dfrac{{3!}}{{1!2!}}\]
Open the factorial in the numerator as \[3! = 3 \times 2!\]
\[{ \Rightarrow ^3}{C_2} = \dfrac{{3 \times 2!}}{{1!2!}}\]
Cancel same terms from numerator and denominator.
\[{ \Rightarrow ^3}{C_2} = 3\] … (8)
From equation (3):
We choose 2 children from 3 children.
Put \[n = 3,r = 2\]in formula of combination.
\[ \Rightarrow \]Number of ways to choose 2 children out of 3 children from equation (4) \[{ = ^3}{C_2}\]
Solve using the expansion of combination formula i.e.\[^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\]
\[{ \Rightarrow ^3}{C_2} = \dfrac{{3!}}{{(3 - 2)!2!}}\]
\[{ \Rightarrow ^3}{C_2} = \dfrac{{3!}}{{1!2!}}\]
Open the factorial in the numerator as \[3! = 3 \times 2!\]
\[{ \Rightarrow ^3}{C_2} = \dfrac{{3 \times 2!}}{{1!2!}}\]
Cancel the same terms from numerator and denominator.
\[{ \Rightarrow ^3}{C_2} = 3\] … (9)
Now selection of 8 children from 14 children is given by the product of equations (6), (7), (8) and (9)
Number of ways of selection \[{ = ^4}{C_2}{ \times ^4}{C_2}{ \times ^3}{C_2}{ \times ^3}{C_2}\]
Substitute the values from equations (6), (7), (8) and (9)
\[ \Rightarrow \]Number of ways of selection \[ = 6 \times 6 \times 3 \times 3\]
\[ \Rightarrow \]Number of ways of selection \[ = 324\]
Number of ways of selection of 8 children from 14 children is 324.
Note: Students might solve for the selection by substituting the value of n as 14 and r as 8 directly into the formula for combinations. This is the wrong process as the value obtained from this will be the number of ways of selection of 8 children from 14 children with no condition. So it will have all combinations and that may not have equal numbers of children for each person.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE