What is the relation between amplitude of a wave and its intensity?
$\begin{align}
& A)Amplitude\propto Intensity \\
& B)Amplitude\propto {{(Intensity)}^{2}} \\
& C)Amplitude\propto \sqrt{Intensity} \\
& D){{(Amplitude)}^{2}}\propto \sqrt{Intensity} \\
\end{align}$
Answer
Verified
484.5k+ views
Hint: Energy of wave is proportional to the square of the amplitude of light wave in terms of wave picture of light. The intensity of a wave is equal to the power transferred by the wave per unit area. Hence, energy is proportional to the intensity.
Formula used:
$E\propto I$, where E is the energy of the wave and I is the intensity.
$E\propto {{(Amplitude)}^{2}}$
Complete step by step answer:
For light waves, the energy of the light wave is proportional to the intensity.
$E\propto I$, where E is the energy of the wave and I is the intensity.
$E\propto {{(Amplitude)}^{2}}$…(1)
Also, the intensity of a wave is power transferred per unit area.
We know that power is energy expended per unit time.
Therefore,
$I=\dfrac{E}{At}$, where, A is the area of the wave and t is the time.
Therefore, we can say that.
$I\propto E$…(2)
From expression (1) and (2) we can say that.
$I\propto {{(Amplitude)}^{2}}$
Or
$Amplitude\propto \sqrt{Intensity}$
Hence, our answer is option C.
Additional Information:
This answer is according to the wave picture of light.
According to the particle picture the intensity can be derived from photon flux.
According to De Broglie principle, light as well as matter have dual (wave and particle) nature.
Light consists of electric and magnetic waves, and hence it is called electromagnetic wave.
In photoelectric effect, the more is the intensity, the more is the photocurrent if the energy of light is higher than the work function of the material.
The amplitude for a wave is the maximum value in its sinusoidal deviation.
Just like light electrons are also known to undergo wave phenomena like diffraction and interference.
It is usually not feasible to measure the intensity for visible light, but it is feasible to measure for radio waves.
The electric wave and magnetic wave are perpendicular to each other during the propagation of light.
Note:
Those students who try to solve this question in a hurry can make simple error in observation as we usually don’t see the expression $Amplitude\propto \sqrt{Intensity}$, and can confuse with the expression $Intensity\propto Amplitud{{e}^{2}}$. So, be alert while solving the question.
Formula used:
$E\propto I$, where E is the energy of the wave and I is the intensity.
$E\propto {{(Amplitude)}^{2}}$
Complete step by step answer:
For light waves, the energy of the light wave is proportional to the intensity.
$E\propto I$, where E is the energy of the wave and I is the intensity.
$E\propto {{(Amplitude)}^{2}}$…(1)
Also, the intensity of a wave is power transferred per unit area.
We know that power is energy expended per unit time.
Therefore,
$I=\dfrac{E}{At}$, where, A is the area of the wave and t is the time.
Therefore, we can say that.
$I\propto E$…(2)
From expression (1) and (2) we can say that.
$I\propto {{(Amplitude)}^{2}}$
Or
$Amplitude\propto \sqrt{Intensity}$
Hence, our answer is option C.
Additional Information:
This answer is according to the wave picture of light.
According to the particle picture the intensity can be derived from photon flux.
According to De Broglie principle, light as well as matter have dual (wave and particle) nature.
Light consists of electric and magnetic waves, and hence it is called electromagnetic wave.
In photoelectric effect, the more is the intensity, the more is the photocurrent if the energy of light is higher than the work function of the material.
The amplitude for a wave is the maximum value in its sinusoidal deviation.
Just like light electrons are also known to undergo wave phenomena like diffraction and interference.
It is usually not feasible to measure the intensity for visible light, but it is feasible to measure for radio waves.
The electric wave and magnetic wave are perpendicular to each other during the propagation of light.
Note:
Those students who try to solve this question in a hurry can make simple error in observation as we usually don’t see the expression $Amplitude\propto \sqrt{Intensity}$, and can confuse with the expression $Intensity\propto Amplitud{{e}^{2}}$. So, be alert while solving the question.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
10 examples of friction in our daily life
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE
How many valence electrons does nitrogen have class 11 chemistry CBSE