Answer
Verified
469.5k+ views
Hint: Use the relation of ideal gas $PV = RT$ to generate the relation between pressure and the energy density of an ideal gas.
Complete step by step solution:
Gases are complicated. They're full of billions and billions of energetic gas molecules that can collide and possibly interact with each other. Since it's hard to exactly describe a real gas, people created the concept of an Ideal gas as an approximation that helps us model and predict the behavior of real gases
We know for one mole of ideal gas,
For an ideal gas
$PV = RT$ ………(i)
And the internal energy of an ideal gas:
${E_{in}} = \dfrac{3}{2}PV$ ………(ii)
From equation i and equation ii
We get,
${E_{in}} = \dfrac{3}{2}RT$
$\dfrac{{{E_{in}}}}{V} = \dfrac{3}{2}P$
Energy density $E = \dfrac{3}{2}P$
$P = \dfrac{2}{3}E$
Alternative method-
Kinetic energy$ = \dfrac{1}{2}MV_{rms}^2$
$ \Rightarrow P = \dfrac{2}{3}E$
Where
M= molar mass
${V_{rms}} = \sqrt {\dfrac{{3KT}}{m}} = \sqrt {\dfrac{{3RT}}{M}} $
$ \Rightarrow KE = \dfrac{3}{2}RT$
$ \Rightarrow KE = \dfrac{3}{2}PV$ $\left[ {PV = RT} \right]$
$ \Rightarrow \dfrac{{KE}}{V} = \dfrac{3}{2}P$
$E = \dfrac{{3P}}{2}$ [E = Energy density]
$ \Rightarrow P = \dfrac{2}{3}E$
Additional Information:
Ideal gas molecules do not attract or repel each other. The only interaction between ideal gas molecules would be an elastic collision upon impact with each other or an elastic collision with the walls of the container.
Ideal gas molecules themselves take up no volume. The gas takes up volume since the molecules expand into a large region of space, but the Ideal gas molecules are approximated as point particles that have no volume in and of themselves.
Note: There are two ways to solve this question first by using ideal gas and internal energy relation second by using ideal gas and kinetic energy relation.
Complete step by step solution:
Gases are complicated. They're full of billions and billions of energetic gas molecules that can collide and possibly interact with each other. Since it's hard to exactly describe a real gas, people created the concept of an Ideal gas as an approximation that helps us model and predict the behavior of real gases
We know for one mole of ideal gas,
For an ideal gas
$PV = RT$ ………(i)
And the internal energy of an ideal gas:
${E_{in}} = \dfrac{3}{2}PV$ ………(ii)
From equation i and equation ii
We get,
${E_{in}} = \dfrac{3}{2}RT$
$\dfrac{{{E_{in}}}}{V} = \dfrac{3}{2}P$
Energy density $E = \dfrac{3}{2}P$
$P = \dfrac{2}{3}E$
Alternative method-
Kinetic energy$ = \dfrac{1}{2}MV_{rms}^2$
$ \Rightarrow P = \dfrac{2}{3}E$
Where
M= molar mass
${V_{rms}} = \sqrt {\dfrac{{3KT}}{m}} = \sqrt {\dfrac{{3RT}}{M}} $
$ \Rightarrow KE = \dfrac{3}{2}RT$
$ \Rightarrow KE = \dfrac{3}{2}PV$ $\left[ {PV = RT} \right]$
$ \Rightarrow \dfrac{{KE}}{V} = \dfrac{3}{2}P$
$E = \dfrac{{3P}}{2}$ [E = Energy density]
$ \Rightarrow P = \dfrac{2}{3}E$
Additional Information:
Ideal gas molecules do not attract or repel each other. The only interaction between ideal gas molecules would be an elastic collision upon impact with each other or an elastic collision with the walls of the container.
Ideal gas molecules themselves take up no volume. The gas takes up volume since the molecules expand into a large region of space, but the Ideal gas molecules are approximated as point particles that have no volume in and of themselves.
Note: There are two ways to solve this question first by using ideal gas and internal energy relation second by using ideal gas and kinetic energy relation.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers