Answer
Verified
387.3k+ views
Hint: $ {K_p}\; $ and $ {K_c}\; $ are the equilibrium constants for ideal type gas mixtures for reversible reactions. When concentration is expressed in terms of atmospheric pressure $ {K_p} $ is used. When concentration is expressed in terms of molarity $ {K_c} $ is used. We will derive the relation between $ {K_p}\; $ and $ {K_c}\; $ to see how they are related to each other.
Complete answer:
For deriving the relation between $ {K_p}\; $ and $ {K_c}\; $ , consider a simple reaction given below:
$ pP + qQ \to rR + sS $
In above reaction, ‘p’ mole of reactant ‘P’ reacts with ‘q’ mole of reactant ‘Q’ to give product ‘r’ mole of R and ‘s’ mole of S. here p, q, r, s are stoichiometric coefficients of P, Q, R, and S respectively.
$ {K_c}\; $ is the equilibrium constant associated with concentration. it is given by
$ {{\text{K}}_{\text{c}}} = \dfrac{{{{\left[ {\text{R}} \right]}^{\text{r}}}{{\left[ {\text{S}} \right]}^{\text{s}}}}}{{{{\left[ {\text{P}} \right]}^{\text{p}}}{{\left[ {\text{Q}} \right]}^{\text{q}}}}} $ …… ( $ 1 $ )
where, R is the molar concentration of product ‘R’, S is the molar concentration of product ‘S’, P is the molar concentration of reactant ‘P’, Q is the molar concentration of reactant ‘Q’.
Similarly,
$ {{\text{K}}_{\text{p}}} = \dfrac{{{{\left[ {{{\text{P}}_{\text{R}}}} \right]}^{\text{r}}}{{\left[ {{{\text{P}}_{\text{S}}}} \right]}^{\text{s}}}}}{{{{\left[ {{{\text{P}}_{\text{P}}}} \right]}^{\text{p}}}{{\left[ {{{\text{P}}_{\text{Q}}}} \right]}^{\text{q}}}}} $ ……… ( $ 2 $ )
where, $ {{\text{P}}_{\text{R}}} $ is the Partial pressure of product R, $ {{\text{P}}_{\text{S}}} $ is the Partial pressure of product S, $ {{\text{P}}_{\text{P}}} $ is the Partial pressure of reactant P, $ {{\text{P}}_{\text{Q}}} $ is the Partial pressure of reactant Q.
Ideal Gas Equation,
$ pV = nRT $ or $ {\text{p}} = \dfrac{{nRT}}{{\text{V}}} $ …….. ( $ 3 $ )
we know $ \dfrac{{\text{n}}}{{\text{V}}} $ is the formula of molarity now arranging equation ( $ 1 $ ) and ( $ 2 $ ) in ( $ 3 $ ) we get,
$ {{\text{P}}_{\text{R}}} = \left[ {\text{R}} \right]RT $
$ {{\text{P}}_{\text{S}}} = \left[ {\text{S}} \right]RT $
now for reactants P and Q
$ {{\text{P}}_{\text{P}}} = \left[ {\text{P}} \right]RT $
$ {{\text{P}}_{\text{Q}}} = \left[ {\text{Q}} \right]RT $
Substituting above $ 4 $ equations in equation ( $ 2 $ ) we get
$ {{\text{K}}_{\text{p}}} = \dfrac{{{{\left[ {\text{R}} \right]}^{\text{r}}}{{\left[ {\text{S}} \right]}^{\text{s}}}{{\left( {RT} \right)}^{\left( {{\text{r}} + {\text{s}}} \right)}}}}{{{{\left[ {\text{P}} \right]}^{\text{p}}}{{\left[ {\text{S}} \right]}^{\text{q}}}{{\left( {RT} \right)}^{\left( {{\text{p}} + {\text{q}}} \right)}}}} $
$ {{\text{K}}_{\text{p}}} = {{\text{K}}_{\text{c}}}{\left[ {RT} \right]^{\left( {{\text{r}} + {\text{s}}} \right) - \left( {{\text{p}} + {\text{q}}} \right)}} $
$ \left( {{\text{r}} + {\text{s}}} \right) - \left( {p + q} \right) $ signify change in moles of product and reactant, which can be represented by $ \vartriangle n $
so our relation becomes
$ {K_p}\; = {{\text{K}}_{\text{c}}}{\left( {RT} \right)^{\vartriangle n}} $
So given formula $ {K_p}\; = {{\text{K}}_{\text{c}}}{\left( {RT} \right)^{ - \vartriangle n}} $ is wrong.
Note:
Closely observe the variables representing concentration and partial pressure of each reactant and product as it could get very confusing. Also assign variables in a manner that did not confuse with some other quantity.
Complete answer:
For deriving the relation between $ {K_p}\; $ and $ {K_c}\; $ , consider a simple reaction given below:
$ pP + qQ \to rR + sS $
In above reaction, ‘p’ mole of reactant ‘P’ reacts with ‘q’ mole of reactant ‘Q’ to give product ‘r’ mole of R and ‘s’ mole of S. here p, q, r, s are stoichiometric coefficients of P, Q, R, and S respectively.
$ {K_c}\; $ is the equilibrium constant associated with concentration. it is given by
$ {{\text{K}}_{\text{c}}} = \dfrac{{{{\left[ {\text{R}} \right]}^{\text{r}}}{{\left[ {\text{S}} \right]}^{\text{s}}}}}{{{{\left[ {\text{P}} \right]}^{\text{p}}}{{\left[ {\text{Q}} \right]}^{\text{q}}}}} $ …… ( $ 1 $ )
where, R is the molar concentration of product ‘R’, S is the molar concentration of product ‘S’, P is the molar concentration of reactant ‘P’, Q is the molar concentration of reactant ‘Q’.
Similarly,
$ {{\text{K}}_{\text{p}}} = \dfrac{{{{\left[ {{{\text{P}}_{\text{R}}}} \right]}^{\text{r}}}{{\left[ {{{\text{P}}_{\text{S}}}} \right]}^{\text{s}}}}}{{{{\left[ {{{\text{P}}_{\text{P}}}} \right]}^{\text{p}}}{{\left[ {{{\text{P}}_{\text{Q}}}} \right]}^{\text{q}}}}} $ ……… ( $ 2 $ )
where, $ {{\text{P}}_{\text{R}}} $ is the Partial pressure of product R, $ {{\text{P}}_{\text{S}}} $ is the Partial pressure of product S, $ {{\text{P}}_{\text{P}}} $ is the Partial pressure of reactant P, $ {{\text{P}}_{\text{Q}}} $ is the Partial pressure of reactant Q.
Ideal Gas Equation,
$ pV = nRT $ or $ {\text{p}} = \dfrac{{nRT}}{{\text{V}}} $ …….. ( $ 3 $ )
we know $ \dfrac{{\text{n}}}{{\text{V}}} $ is the formula of molarity now arranging equation ( $ 1 $ ) and ( $ 2 $ ) in ( $ 3 $ ) we get,
$ {{\text{P}}_{\text{R}}} = \left[ {\text{R}} \right]RT $
$ {{\text{P}}_{\text{S}}} = \left[ {\text{S}} \right]RT $
now for reactants P and Q
$ {{\text{P}}_{\text{P}}} = \left[ {\text{P}} \right]RT $
$ {{\text{P}}_{\text{Q}}} = \left[ {\text{Q}} \right]RT $
Substituting above $ 4 $ equations in equation ( $ 2 $ ) we get
$ {{\text{K}}_{\text{p}}} = \dfrac{{{{\left[ {\text{R}} \right]}^{\text{r}}}{{\left[ {\text{S}} \right]}^{\text{s}}}{{\left( {RT} \right)}^{\left( {{\text{r}} + {\text{s}}} \right)}}}}{{{{\left[ {\text{P}} \right]}^{\text{p}}}{{\left[ {\text{S}} \right]}^{\text{q}}}{{\left( {RT} \right)}^{\left( {{\text{p}} + {\text{q}}} \right)}}}} $
$ {{\text{K}}_{\text{p}}} = {{\text{K}}_{\text{c}}}{\left[ {RT} \right]^{\left( {{\text{r}} + {\text{s}}} \right) - \left( {{\text{p}} + {\text{q}}} \right)}} $
$ \left( {{\text{r}} + {\text{s}}} \right) - \left( {p + q} \right) $ signify change in moles of product and reactant, which can be represented by $ \vartriangle n $
so our relation becomes
$ {K_p}\; = {{\text{K}}_{\text{c}}}{\left( {RT} \right)^{\vartriangle n}} $
So given formula $ {K_p}\; = {{\text{K}}_{\text{c}}}{\left( {RT} \right)^{ - \vartriangle n}} $ is wrong.
Note:
Closely observe the variables representing concentration and partial pressure of each reactant and product as it could get very confusing. Also assign variables in a manner that did not confuse with some other quantity.
Recently Updated Pages
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
Which is the longest day and shortest night in the class 11 sst CBSE
What is the definite integral of zero a constant b class 12 maths CBSE
Name five important trees found in the tropical evergreen class 10 social studies CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE