Answer
Verified
375.6k+ views
Hint: $ {K_p}\; $ and $ {K_c}\; $ are the equilibrium constants for ideal type gas mixtures for reversible reactions. When concentration is expressed in terms of atmospheric pressure $ {K_p} $ is used. When concentration is expressed in terms of molarity $ {K_c} $ is used. We will derive the relation between $ {K_p}\; $ and $ {K_c}\; $ to see how they are related to each other.
Complete answer:
For deriving the relation between $ {K_p}\; $ and $ {K_c}\; $ , consider a simple reaction given below:
$ pP + qQ \to rR + sS $
In above reaction, ‘p’ mole of reactant ‘P’ reacts with ‘q’ mole of reactant ‘Q’ to give product ‘r’ mole of R and ‘s’ mole of S. here p, q, r, s are stoichiometric coefficients of P, Q, R, and S respectively.
$ {K_c}\; $ is the equilibrium constant associated with concentration. it is given by
$ {{\text{K}}_{\text{c}}} = \dfrac{{{{\left[ {\text{R}} \right]}^{\text{r}}}{{\left[ {\text{S}} \right]}^{\text{s}}}}}{{{{\left[ {\text{P}} \right]}^{\text{p}}}{{\left[ {\text{Q}} \right]}^{\text{q}}}}} $ …… ( $ 1 $ )
where, R is the molar concentration of product ‘R’, S is the molar concentration of product ‘S’, P is the molar concentration of reactant ‘P’, Q is the molar concentration of reactant ‘Q’.
Similarly,
$ {{\text{K}}_{\text{p}}} = \dfrac{{{{\left[ {{{\text{P}}_{\text{R}}}} \right]}^{\text{r}}}{{\left[ {{{\text{P}}_{\text{S}}}} \right]}^{\text{s}}}}}{{{{\left[ {{{\text{P}}_{\text{P}}}} \right]}^{\text{p}}}{{\left[ {{{\text{P}}_{\text{Q}}}} \right]}^{\text{q}}}}} $ ……… ( $ 2 $ )
where, $ {{\text{P}}_{\text{R}}} $ is the Partial pressure of product R, $ {{\text{P}}_{\text{S}}} $ is the Partial pressure of product S, $ {{\text{P}}_{\text{P}}} $ is the Partial pressure of reactant P, $ {{\text{P}}_{\text{Q}}} $ is the Partial pressure of reactant Q.
Ideal Gas Equation,
$ pV = nRT $ or $ {\text{p}} = \dfrac{{nRT}}{{\text{V}}} $ …….. ( $ 3 $ )
we know $ \dfrac{{\text{n}}}{{\text{V}}} $ is the formula of molarity now arranging equation ( $ 1 $ ) and ( $ 2 $ ) in ( $ 3 $ ) we get,
$ {{\text{P}}_{\text{R}}} = \left[ {\text{R}} \right]RT $
$ {{\text{P}}_{\text{S}}} = \left[ {\text{S}} \right]RT $
now for reactants P and Q
$ {{\text{P}}_{\text{P}}} = \left[ {\text{P}} \right]RT $
$ {{\text{P}}_{\text{Q}}} = \left[ {\text{Q}} \right]RT $
Substituting above $ 4 $ equations in equation ( $ 2 $ ) we get
$ {{\text{K}}_{\text{p}}} = \dfrac{{{{\left[ {\text{R}} \right]}^{\text{r}}}{{\left[ {\text{S}} \right]}^{\text{s}}}{{\left( {RT} \right)}^{\left( {{\text{r}} + {\text{s}}} \right)}}}}{{{{\left[ {\text{P}} \right]}^{\text{p}}}{{\left[ {\text{S}} \right]}^{\text{q}}}{{\left( {RT} \right)}^{\left( {{\text{p}} + {\text{q}}} \right)}}}} $
$ {{\text{K}}_{\text{p}}} = {{\text{K}}_{\text{c}}}{\left[ {RT} \right]^{\left( {{\text{r}} + {\text{s}}} \right) - \left( {{\text{p}} + {\text{q}}} \right)}} $
$ \left( {{\text{r}} + {\text{s}}} \right) - \left( {p + q} \right) $ signify change in moles of product and reactant, which can be represented by $ \vartriangle n $
so our relation becomes
$ {K_p}\; = {{\text{K}}_{\text{c}}}{\left( {RT} \right)^{\vartriangle n}} $
So given formula $ {K_p}\; = {{\text{K}}_{\text{c}}}{\left( {RT} \right)^{ - \vartriangle n}} $ is wrong.
Note:
Closely observe the variables representing concentration and partial pressure of each reactant and product as it could get very confusing. Also assign variables in a manner that did not confuse with some other quantity.
Complete answer:
For deriving the relation between $ {K_p}\; $ and $ {K_c}\; $ , consider a simple reaction given below:
$ pP + qQ \to rR + sS $
In above reaction, ‘p’ mole of reactant ‘P’ reacts with ‘q’ mole of reactant ‘Q’ to give product ‘r’ mole of R and ‘s’ mole of S. here p, q, r, s are stoichiometric coefficients of P, Q, R, and S respectively.
$ {K_c}\; $ is the equilibrium constant associated with concentration. it is given by
$ {{\text{K}}_{\text{c}}} = \dfrac{{{{\left[ {\text{R}} \right]}^{\text{r}}}{{\left[ {\text{S}} \right]}^{\text{s}}}}}{{{{\left[ {\text{P}} \right]}^{\text{p}}}{{\left[ {\text{Q}} \right]}^{\text{q}}}}} $ …… ( $ 1 $ )
where, R is the molar concentration of product ‘R’, S is the molar concentration of product ‘S’, P is the molar concentration of reactant ‘P’, Q is the molar concentration of reactant ‘Q’.
Similarly,
$ {{\text{K}}_{\text{p}}} = \dfrac{{{{\left[ {{{\text{P}}_{\text{R}}}} \right]}^{\text{r}}}{{\left[ {{{\text{P}}_{\text{S}}}} \right]}^{\text{s}}}}}{{{{\left[ {{{\text{P}}_{\text{P}}}} \right]}^{\text{p}}}{{\left[ {{{\text{P}}_{\text{Q}}}} \right]}^{\text{q}}}}} $ ……… ( $ 2 $ )
where, $ {{\text{P}}_{\text{R}}} $ is the Partial pressure of product R, $ {{\text{P}}_{\text{S}}} $ is the Partial pressure of product S, $ {{\text{P}}_{\text{P}}} $ is the Partial pressure of reactant P, $ {{\text{P}}_{\text{Q}}} $ is the Partial pressure of reactant Q.
Ideal Gas Equation,
$ pV = nRT $ or $ {\text{p}} = \dfrac{{nRT}}{{\text{V}}} $ …….. ( $ 3 $ )
we know $ \dfrac{{\text{n}}}{{\text{V}}} $ is the formula of molarity now arranging equation ( $ 1 $ ) and ( $ 2 $ ) in ( $ 3 $ ) we get,
$ {{\text{P}}_{\text{R}}} = \left[ {\text{R}} \right]RT $
$ {{\text{P}}_{\text{S}}} = \left[ {\text{S}} \right]RT $
now for reactants P and Q
$ {{\text{P}}_{\text{P}}} = \left[ {\text{P}} \right]RT $
$ {{\text{P}}_{\text{Q}}} = \left[ {\text{Q}} \right]RT $
Substituting above $ 4 $ equations in equation ( $ 2 $ ) we get
$ {{\text{K}}_{\text{p}}} = \dfrac{{{{\left[ {\text{R}} \right]}^{\text{r}}}{{\left[ {\text{S}} \right]}^{\text{s}}}{{\left( {RT} \right)}^{\left( {{\text{r}} + {\text{s}}} \right)}}}}{{{{\left[ {\text{P}} \right]}^{\text{p}}}{{\left[ {\text{S}} \right]}^{\text{q}}}{{\left( {RT} \right)}^{\left( {{\text{p}} + {\text{q}}} \right)}}}} $
$ {{\text{K}}_{\text{p}}} = {{\text{K}}_{\text{c}}}{\left[ {RT} \right]^{\left( {{\text{r}} + {\text{s}}} \right) - \left( {{\text{p}} + {\text{q}}} \right)}} $
$ \left( {{\text{r}} + {\text{s}}} \right) - \left( {p + q} \right) $ signify change in moles of product and reactant, which can be represented by $ \vartriangle n $
so our relation becomes
$ {K_p}\; = {{\text{K}}_{\text{c}}}{\left( {RT} \right)^{\vartriangle n}} $
So given formula $ {K_p}\; = {{\text{K}}_{\text{c}}}{\left( {RT} \right)^{ - \vartriangle n}} $ is wrong.
Note:
Closely observe the variables representing concentration and partial pressure of each reactant and product as it could get very confusing. Also assign variables in a manner that did not confuse with some other quantity.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
Write the difference between order and molecularity class 11 maths CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What are noble gases Why are they also called inert class 11 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between calcination and roasting class 11 chemistry CBSE