Represent $\sqrt{7}$ on the number line.
Answer
Verified
416.3k+ views
Hint: Use the fact that if two sides of a right-angled triangle are $\sqrt{x}$ and 1, then the hypotenuse is given by $\sqrt{x+1}$. Hence form a right-angled triangle with sides, 1 and 1. The hypotenuse will be $\sqrt{2}$. Then using the length of hypotenuse form another right-angled triangle with sides, $\sqrt{3}$ and 1. The hypotenuse of that triangle will be $\sqrt{3}$. Continue in the same way till we get the hypotenuse length as $\sqrt{7}$. Now extend compass length to be equal to $\sqrt{7}$ (Keep one arm of the compass on one endpoint of the hypotenuse and the other arm on the other endpoint of the hypotenuse). Draw an arc with 0 as the centre and let it intersect the positive x-axis at some point. The point then represents $\sqrt{7}$ on the number line.
Complete step-by-step answer:
Consider a right-angled triangle with side length as 1,1 as shown below
Hence $BC=\sqrt{{{1}^{2}}+{{1}^{2}}}=\sqrt{2}$
Draw CD perpendicular BC and CD = 1 unit as shown below.
Hence $BD=\sqrt{{{\left( \sqrt{2} \right)}^{2}}+{{1}^{2}}}=\sqrt{3}$
Draw CE perpendicular to BD, CE = 1 unit.
Hence $BE=\sqrt{{{\left( \sqrt{3} \right)}^{2}}+1}=\sqrt{4}$
Draw EF perpendicular to BE, EF = 1 unit as shown below
Hence $BF=\sqrt{{{\left( \sqrt{4} \right)}^{2}}+1}=\sqrt{5}$
Draw FG perpendicular BF and FG = 1 unit as shown below.
Hence $BG=\sqrt{{{\left( \sqrt{5} \right)}^{2}}+1}=\sqrt{6}$
Draw GH perpendicular BG and GH = 1 unit, as shown below.
Hence $BH=\sqrt{{{\left( \sqrt{6} \right)}^{2}}+1}=\sqrt{7}$
With O as centre and radius BH, mark draw an arc and let it intersect the positive x-axis at M. M represents $\sqrt{7}$ on the number line.
Hence $\sqrt{7}$ is represented on the number line.
Note: Alternative method: Best Method:
Draw OX = 7 units.
Extend OX to P such that XP = 1 unit.
Now locate the midpoint of OP by drawing perpendicular bisector of OP. Let it intersect OP at A as shown below.
With A as centre and radius OP draw a semicircle as shown below
Now draw a line parallel to the perpendicular bisector through X and let it intersect the semicircle at B as shown below.
Hence $XB=\sqrt{7}$
Now extend compass to be of radius XB draw an arc from O and let it intersect OP at C.
C represents $\sqrt{7}$ on the number line.
Complete step-by-step answer:
Consider a right-angled triangle with side length as 1,1 as shown below
Hence $BC=\sqrt{{{1}^{2}}+{{1}^{2}}}=\sqrt{2}$
Draw CD perpendicular BC and CD = 1 unit as shown below.
Hence $BD=\sqrt{{{\left( \sqrt{2} \right)}^{2}}+{{1}^{2}}}=\sqrt{3}$
Draw CE perpendicular to BD, CE = 1 unit.
Hence $BE=\sqrt{{{\left( \sqrt{3} \right)}^{2}}+1}=\sqrt{4}$
Draw EF perpendicular to BE, EF = 1 unit as shown below
Hence $BF=\sqrt{{{\left( \sqrt{4} \right)}^{2}}+1}=\sqrt{5}$
Draw FG perpendicular BF and FG = 1 unit as shown below.
Hence $BG=\sqrt{{{\left( \sqrt{5} \right)}^{2}}+1}=\sqrt{6}$
Draw GH perpendicular BG and GH = 1 unit, as shown below.
Hence $BH=\sqrt{{{\left( \sqrt{6} \right)}^{2}}+1}=\sqrt{7}$
With O as centre and radius BH, mark draw an arc and let it intersect the positive x-axis at M. M represents $\sqrt{7}$ on the number line.
Hence $\sqrt{7}$ is represented on the number line.
Note: Alternative method: Best Method:
Draw OX = 7 units.
Extend OX to P such that XP = 1 unit.
Now locate the midpoint of OP by drawing perpendicular bisector of OP. Let it intersect OP at A as shown below.
With A as centre and radius OP draw a semicircle as shown below
Now draw a line parallel to the perpendicular bisector through X and let it intersect the semicircle at B as shown below.
Hence $XB=\sqrt{7}$
Now extend compass to be of radius XB draw an arc from O and let it intersect OP at C.
C represents $\sqrt{7}$ on the number line.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
Write an application to the principal requesting five class 10 english CBSE
Difference between mass and weight class 10 physics CBSE
What is Commercial Farming ? What are its types ? Explain them with Examples
What are five examples of facts and opinions class 10 english CBSE
Which state has the longest coastline in India A Tamil class 10 social science CBSE
10 examples of evaporation in daily life with explanations