Answer
Verified
500.1k+ views
Hint- Here, we will be comparing the degrees of the numerator and denominator to get the given function in desired form of partial fractions.
Let the given function of $x$ be \[{\text{F}} = \dfrac{{{x^4}}}{{\left( {x - 1} \right)\left( {x - 2} \right)}}\]
For converting the given function F into partial fractions, we can write
\[
{\text{F}} = \dfrac{{{x^4}}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \dfrac{{\left[ {\left( {x - 1} \right) - \left( {x - 2} \right)} \right]{x^4}}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \dfrac{{\left( {x - 1} \right){x^4} - \left( {x - 2} \right){x^4}}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \dfrac{{\left( {x - 1} \right){x^4}}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} - \dfrac{{\left( {x - 2} \right){x^4}}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} \\
\Rightarrow {\text{F}} = \dfrac{{{x^4}}}{{\left( {x - 2} \right)}} - \dfrac{{{x^4}}}{{\left( {x - 1} \right)}} \\
\]
The above expression of the function F is not in a form of partial fractions as it can be further reduced.
Therefore, the function can be written as
\[
{\text{ F}} = \dfrac{{x \times {x^3}}}{{\left( {x - 2} \right)}} - \dfrac{{x \times {x^3}}}{{\left( {x - 1} \right)}} = \dfrac{{\left( {x - 2 + 2} \right) \times {x^3}}}{{\left( {x - 2} \right)}} - \dfrac{{\left( {x - 1 + 1} \right) \times {x^3}}}{{\left( {x - 1} \right)}} \\
{\text{F}} = \dfrac{{\left( {x - 2} \right){x^3} + 2{x^3}}}{{\left( {x - 2} \right)}} - \dfrac{{\left( {x - 1} \right){x^3} + {x^3}}}{{\left( {x - 1} \right)}} = \dfrac{{\left( {x - 2} \right){x^3}}}{{\left( {x - 2} \right)}} + \dfrac{{2{x^3}}}{{\left( {x - 2} \right)}} - \dfrac{{\left( {x - 1} \right){x^3}}}{{\left( {x - 1} \right)}} - \dfrac{{{x^3}}}{{\left( {x - 1} \right)}} \\
\Rightarrow {\text{F}} = {x^3} + \dfrac{{2{x^3}}}{{\left( {x - 2} \right)}} - {x^3} - \dfrac{{{x^3}}}{{\left( {x - 1} \right)}} = \dfrac{{2{x^3}}}{{\left( {x - 2} \right)}} - \dfrac{{{x^3}}}{{\left( {x - 1} \right)}} \\
\]
The above expression of the function F is not in a form of partial fractions as it can be further reduced.
Therefore, the function can be written as
\[
{\text{F}} = \dfrac{{2{x^2} \times x}}{{\left( {x - 2} \right)}} - \dfrac{{x \times {x^2}}}{{\left( {x - 1} \right)}} = \dfrac{{2{x^2}\left( {x - 2 + 2} \right)}}{{\left( {x - 2} \right)}} - \dfrac{{\left( {x - 1 + 1} \right){x^2}}}{{\left( {x - 1} \right)}} \\
\Rightarrow {\text{F}} = \dfrac{{2{x^2}\left( {x - 2} \right) + 4{x^2}}}{{\left( {x - 2} \right)}} - \left[ {\dfrac{{\left( {x - 1} \right){x^2} + {x^2}}}{{\left( {x - 1} \right)}}} \right] = \dfrac{{2{x^2}\left( {x - 2} \right)}}{{\left( {x - 2} \right)}} + \dfrac{{4{x^2}}}{{\left( {x - 2} \right)}} - \dfrac{{\left( {x - 1} \right){x^2}}}{{\left( {x - 1} \right)}} - \dfrac{{{x^2}}}{{\left( {x - 1} \right)}} \\
\Rightarrow {\text{F}} = 2{x^2} + \dfrac{{4{x^2}}}{{\left( {x - 2} \right)}} - {x^2} - \dfrac{{{x^2}}}{{\left( {x - 1} \right)}} = {x^2} + \dfrac{{4{x^2}}}{{\left( {x - 2} \right)}} - \dfrac{{{x^2}}}{{\left( {x - 1} \right)}} \\
\]
The above expression of the function F is not in a form of partial fractions as it can be further reduced.
Therefore, the function can be written as
\[
{\text{F}} = {x^2} + \dfrac{{4x \times x}}{{\left( {x - 2} \right)}} - \dfrac{{x \times x}}{{\left( {x - 1} \right)}} = {x^2} + \dfrac{{4x\left( {x - 2 + 2} \right)}}{{\left( {x - 2} \right)}} - \dfrac{{x\left( {x - 1 + 1} \right)}}{{\left( {x - 1} \right)}} \\
\Rightarrow {\text{F}} = {x^2} + \dfrac{{4x\left( {x - 2} \right) + 8x}}{{\left( {x - 2} \right)}} - \left[ {\dfrac{{x\left( {x - 1} \right) + x}}{{\left( {x - 1} \right)}}} \right] = {x^2} + \dfrac{{4x\left( {x - 2} \right)}}{{\left( {x - 2} \right)}} + \dfrac{{8x}}{{\left( {x - 2} \right)}} - \dfrac{{x\left( {x - 1} \right)}}{{\left( {x - 1} \right)}} - \dfrac{x}{{\left( {x - 1} \right)}} \\
\Rightarrow {\text{F}} = {x^2} + 4x + \dfrac{{8x}}{{\left( {x - 2} \right)}} - x - \dfrac{x}{{\left( {x - 1} \right)}} = {x^2} + 3x + \dfrac{{8x}}{{\left( {x - 2} \right)}} - \dfrac{x}{{\left( {x - 1} \right)}} \\
\]
The above expression of the function F is not in a form of partial fractions as it can be further reduced.
Therefore, the function can be written as
\[
{\text{ F}} = {x^2} + 3x + \dfrac{{8\left( {x - 2 + 2} \right)}}{{\left( {x - 2} \right)}} - \left[ {\dfrac{{x - 1 + 1}}{{\left( {x - 1} \right)}}} \right] \\
\Rightarrow {\text{F}} = {x^2} + 3x + \dfrac{{8\left( {x - 2} \right) + 16}}{{\left( {x - 2} \right)}} - \left[ {\dfrac{{x - 1 + 1}}{{\left( {x - 1} \right)}}} \right] = {x^2} + 3x + \dfrac{{8\left( {x - 2} \right)}}{{\left( {x - 2} \right)}} + \dfrac{{16}}{{\left( {x - 2} \right)}} - \left[ {\dfrac{{x - 1}}{{\left( {x - 1} \right)}} + \dfrac{1}{{\left( {x - 1} \right)}}} \right] \\
\Rightarrow {\text{F}} = {x^2} + 3x + \dfrac{{8\left( {x - 2} \right)}}{{\left( {x - 2} \right)}} + \dfrac{{16}}{{\left( {x - 2} \right)}} - \left[ {\dfrac{{x - 1}}{{\left( {x - 1} \right)}} + \dfrac{1}{{\left( {x - 1} \right)}}} \right] = {x^2} + 3x + 8 + \dfrac{{16}}{{\left( {x - 2} \right)}} - 1 - \dfrac{1}{{\left( {x - 1} \right)}} \\
\Rightarrow {\text{F}} = {x^2} + 3x + 7 + \dfrac{{16}}{{\left( {x - 2} \right)}} - \dfrac{1}{{\left( {x - 1} \right)}} \\
\]
In the above expression, the given function F is represented in the form of partial fractions.
Note- In these types of problems, we have to ensure that the final representation of the function is in terms of partial fractions by simply verifying that the degree of the numerator is greater than that of the denominator in the fractional terms involved in the final representation.
Let the given function of $x$ be \[{\text{F}} = \dfrac{{{x^4}}}{{\left( {x - 1} \right)\left( {x - 2} \right)}}\]
For converting the given function F into partial fractions, we can write
\[
{\text{F}} = \dfrac{{{x^4}}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \dfrac{{\left[ {\left( {x - 1} \right) - \left( {x - 2} \right)} \right]{x^4}}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \dfrac{{\left( {x - 1} \right){x^4} - \left( {x - 2} \right){x^4}}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \dfrac{{\left( {x - 1} \right){x^4}}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} - \dfrac{{\left( {x - 2} \right){x^4}}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} \\
\Rightarrow {\text{F}} = \dfrac{{{x^4}}}{{\left( {x - 2} \right)}} - \dfrac{{{x^4}}}{{\left( {x - 1} \right)}} \\
\]
The above expression of the function F is not in a form of partial fractions as it can be further reduced.
Therefore, the function can be written as
\[
{\text{ F}} = \dfrac{{x \times {x^3}}}{{\left( {x - 2} \right)}} - \dfrac{{x \times {x^3}}}{{\left( {x - 1} \right)}} = \dfrac{{\left( {x - 2 + 2} \right) \times {x^3}}}{{\left( {x - 2} \right)}} - \dfrac{{\left( {x - 1 + 1} \right) \times {x^3}}}{{\left( {x - 1} \right)}} \\
{\text{F}} = \dfrac{{\left( {x - 2} \right){x^3} + 2{x^3}}}{{\left( {x - 2} \right)}} - \dfrac{{\left( {x - 1} \right){x^3} + {x^3}}}{{\left( {x - 1} \right)}} = \dfrac{{\left( {x - 2} \right){x^3}}}{{\left( {x - 2} \right)}} + \dfrac{{2{x^3}}}{{\left( {x - 2} \right)}} - \dfrac{{\left( {x - 1} \right){x^3}}}{{\left( {x - 1} \right)}} - \dfrac{{{x^3}}}{{\left( {x - 1} \right)}} \\
\Rightarrow {\text{F}} = {x^3} + \dfrac{{2{x^3}}}{{\left( {x - 2} \right)}} - {x^3} - \dfrac{{{x^3}}}{{\left( {x - 1} \right)}} = \dfrac{{2{x^3}}}{{\left( {x - 2} \right)}} - \dfrac{{{x^3}}}{{\left( {x - 1} \right)}} \\
\]
The above expression of the function F is not in a form of partial fractions as it can be further reduced.
Therefore, the function can be written as
\[
{\text{F}} = \dfrac{{2{x^2} \times x}}{{\left( {x - 2} \right)}} - \dfrac{{x \times {x^2}}}{{\left( {x - 1} \right)}} = \dfrac{{2{x^2}\left( {x - 2 + 2} \right)}}{{\left( {x - 2} \right)}} - \dfrac{{\left( {x - 1 + 1} \right){x^2}}}{{\left( {x - 1} \right)}} \\
\Rightarrow {\text{F}} = \dfrac{{2{x^2}\left( {x - 2} \right) + 4{x^2}}}{{\left( {x - 2} \right)}} - \left[ {\dfrac{{\left( {x - 1} \right){x^2} + {x^2}}}{{\left( {x - 1} \right)}}} \right] = \dfrac{{2{x^2}\left( {x - 2} \right)}}{{\left( {x - 2} \right)}} + \dfrac{{4{x^2}}}{{\left( {x - 2} \right)}} - \dfrac{{\left( {x - 1} \right){x^2}}}{{\left( {x - 1} \right)}} - \dfrac{{{x^2}}}{{\left( {x - 1} \right)}} \\
\Rightarrow {\text{F}} = 2{x^2} + \dfrac{{4{x^2}}}{{\left( {x - 2} \right)}} - {x^2} - \dfrac{{{x^2}}}{{\left( {x - 1} \right)}} = {x^2} + \dfrac{{4{x^2}}}{{\left( {x - 2} \right)}} - \dfrac{{{x^2}}}{{\left( {x - 1} \right)}} \\
\]
The above expression of the function F is not in a form of partial fractions as it can be further reduced.
Therefore, the function can be written as
\[
{\text{F}} = {x^2} + \dfrac{{4x \times x}}{{\left( {x - 2} \right)}} - \dfrac{{x \times x}}{{\left( {x - 1} \right)}} = {x^2} + \dfrac{{4x\left( {x - 2 + 2} \right)}}{{\left( {x - 2} \right)}} - \dfrac{{x\left( {x - 1 + 1} \right)}}{{\left( {x - 1} \right)}} \\
\Rightarrow {\text{F}} = {x^2} + \dfrac{{4x\left( {x - 2} \right) + 8x}}{{\left( {x - 2} \right)}} - \left[ {\dfrac{{x\left( {x - 1} \right) + x}}{{\left( {x - 1} \right)}}} \right] = {x^2} + \dfrac{{4x\left( {x - 2} \right)}}{{\left( {x - 2} \right)}} + \dfrac{{8x}}{{\left( {x - 2} \right)}} - \dfrac{{x\left( {x - 1} \right)}}{{\left( {x - 1} \right)}} - \dfrac{x}{{\left( {x - 1} \right)}} \\
\Rightarrow {\text{F}} = {x^2} + 4x + \dfrac{{8x}}{{\left( {x - 2} \right)}} - x - \dfrac{x}{{\left( {x - 1} \right)}} = {x^2} + 3x + \dfrac{{8x}}{{\left( {x - 2} \right)}} - \dfrac{x}{{\left( {x - 1} \right)}} \\
\]
The above expression of the function F is not in a form of partial fractions as it can be further reduced.
Therefore, the function can be written as
\[
{\text{ F}} = {x^2} + 3x + \dfrac{{8\left( {x - 2 + 2} \right)}}{{\left( {x - 2} \right)}} - \left[ {\dfrac{{x - 1 + 1}}{{\left( {x - 1} \right)}}} \right] \\
\Rightarrow {\text{F}} = {x^2} + 3x + \dfrac{{8\left( {x - 2} \right) + 16}}{{\left( {x - 2} \right)}} - \left[ {\dfrac{{x - 1 + 1}}{{\left( {x - 1} \right)}}} \right] = {x^2} + 3x + \dfrac{{8\left( {x - 2} \right)}}{{\left( {x - 2} \right)}} + \dfrac{{16}}{{\left( {x - 2} \right)}} - \left[ {\dfrac{{x - 1}}{{\left( {x - 1} \right)}} + \dfrac{1}{{\left( {x - 1} \right)}}} \right] \\
\Rightarrow {\text{F}} = {x^2} + 3x + \dfrac{{8\left( {x - 2} \right)}}{{\left( {x - 2} \right)}} + \dfrac{{16}}{{\left( {x - 2} \right)}} - \left[ {\dfrac{{x - 1}}{{\left( {x - 1} \right)}} + \dfrac{1}{{\left( {x - 1} \right)}}} \right] = {x^2} + 3x + 8 + \dfrac{{16}}{{\left( {x - 2} \right)}} - 1 - \dfrac{1}{{\left( {x - 1} \right)}} \\
\Rightarrow {\text{F}} = {x^2} + 3x + 7 + \dfrac{{16}}{{\left( {x - 2} \right)}} - \dfrac{1}{{\left( {x - 1} \right)}} \\
\]
In the above expression, the given function F is represented in the form of partial fractions.
Note- In these types of problems, we have to ensure that the final representation of the function is in terms of partial fractions by simply verifying that the degree of the numerator is greater than that of the denominator in the fractional terms involved in the final representation.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE