How many right angles does a hexagon have?
Answer
Verified
450k+ views
Hint:In the given question, we have been given the name of a geometric shape, a polygon. Then, we have been asked how many angles of a particular kind are there in the polygon. To answer that, we first need to know how the given polygon looks like, what is the total sum of the angles.
Formula Used:
The total sum of the angles in a polygon with \[n\] sides is,
\[ = 180\left( {n - 2} \right)\]
Complete step by step answer:
The total sum of angles in a hexagon, a polynomial with \[6\] sides, is
\[180 \times \left( {6 - 2} \right) = 720^\circ \]
In a regular hexagon, all the angles are equal, because of which the measure of each angle is \[120^\circ \], making the regular hexagon have no possible right angles. Hence, only an irregular hexagon can have right angles.
Now, we know that the number of angles in a hexagon is \[6\]. Hence, the maximum number of right angles in a hexagon is going to be the integer just smaller than \[6\], which is:
\[6 - 1 = 5\]
Hence, a hexagon can have \[5\] right angles.
Note: Sometimes, for solving the question, we have to go beyond the obvious. We have to think about the consequences of the answer that we give. In a regular hexagon, all the angles are equal, because of which the measure of each angle is \[120^\circ \], making the regular hexagon have no possible right angles. Hence, only an irregular hexagon can have right angles. Then, by using this fact, we found the maximum possible number of right angles in a hexagon.
Formula Used:
The total sum of the angles in a polygon with \[n\] sides is,
\[ = 180\left( {n - 2} \right)\]
Complete step by step answer:
The total sum of angles in a hexagon, a polynomial with \[6\] sides, is
\[180 \times \left( {6 - 2} \right) = 720^\circ \]
In a regular hexagon, all the angles are equal, because of which the measure of each angle is \[120^\circ \], making the regular hexagon have no possible right angles. Hence, only an irregular hexagon can have right angles.
Now, we know that the number of angles in a hexagon is \[6\]. Hence, the maximum number of right angles in a hexagon is going to be the integer just smaller than \[6\], which is:
\[6 - 1 = 5\]
Hence, a hexagon can have \[5\] right angles.
Note: Sometimes, for solving the question, we have to go beyond the obvious. We have to think about the consequences of the answer that we give. In a regular hexagon, all the angles are equal, because of which the measure of each angle is \[120^\circ \], making the regular hexagon have no possible right angles. Hence, only an irregular hexagon can have right angles. Then, by using this fact, we found the maximum possible number of right angles in a hexagon.
Recently Updated Pages
You are awaiting your class 10th results Meanwhile class 7 english CBSE
In case of conflict between fundamental rights of citizens class 7 social science CBSE
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
Trending doubts
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Collective noun a of sailors class 7 english CBSE
Convert 200 Million dollars in rupees class 7 maths CBSE
Fill in the blanks with appropriate modals a Drivers class 7 english CBSE
What are the controls affecting the climate of Ind class 7 social science CBSE
The southernmost point of the Indian mainland is known class 7 social studies CBSE