Answer
Verified
398.4k+ views
Hint: In the given question, we have to find the compound interest where the principal amount is borrowed and the rate of annual interest is given. We can use the formula \[A = P{(1 + \dfrac{r}{n})^{n\,t}}\] to calculate the amount payable after three years and then deduct the principal amount to arrive at the compound interest i.e. \[CI = A - P\].
Complete step by step solution:
Compound interest (also known as compounding interest) is the interest on a loan or deposit that is measured using both the original principal and the interest accrued over time.
The total compounded amount payable after a specific period can be calculated with the following formula:
\[A = P{(1 + \dfrac{r}{n})^{n\,t}}\]
Where,
\[A = \]Final Amount
\[P = \]Principal Amount
\[r = \]Rate of interest
\[n = \]Number of times interest is to be compounded per year/annum
\[t = \]Time (in years)
For example, Rs.\[100\] compounded at \[10\% \] per annum for \[2\] year will result in:
\[ = 100{(1 + \dfrac{{10\% }}{1})^{(1)(2)}}\]
\[ = 100{(1 + 0.1)^2}\]
On simplifying in further we get
\[ = 100{(1.1)^2}\]
\[ = 100(1.21)\]
\[ = 121\]
Here, if the interest was to be compounded half-yearly, then \[n = 4\]as interest will be compounded four times over the two years half-yearly. Similarly, if it was quarterly, then \[n = 8\].
Now we can solve the sum as follows:
The loan taken will become our principal amount and rate of interest is given to be compounded annually. Hence-
\[P = 16,000\]
\[n = 1\] (annually)
\[t = 3\] (years)
\[r = 12\dfrac{1}{2}\% = 0.125\]
Applying the formula, we get,
\[A = P{(1 + \dfrac{r}{n})^{n\,t}}\]
\[A = 16000{(1 + \dfrac{{0.125}}{1})^{(1)(3)}}\]
\[A = 16000{(1 + 0.125)^3}\]
On simplifying in further we get
\[A = 16000{(1.125)^3}\]
\[A = 16000(1.4238)\]
\[A = 22781.25\]
Now Compound Interest (CI) can be found out as follows:
\[CI = A - P\]
\[CI = 22781.25 - 16000\]
\[CI = 6781.25\]
Hence compounded Interest will be \[Rs.6781.25\] over the period of three years. Therefore, Option (A) is correct.
Note:
We can also apply the following formula to solve the sum directly:
\[CI = P[{(1 + \dfrac{r}{{100}})^n} - 1]\] where \[n = \]number of years
\[CI = 16000[{(1 + \dfrac{{12.5}}{{100}})^3} - 1]\]
\[CI = 16000[{(1 + 0.125)^3} - 1]\]
On simplifying in further we get
\[CI = 16000[{(1.125)^3} - 1]\]
\[CI = 16000[1.4238 - 1]\]
\[CI = 16000[0.4238]\]
\[CI = 6780.8\]
Difference of \[6781.25 - 6780.8 = 0.45\] in the answer is due to decimal points.
Complete step by step solution:
Compound interest (also known as compounding interest) is the interest on a loan or deposit that is measured using both the original principal and the interest accrued over time.
The total compounded amount payable after a specific period can be calculated with the following formula:
\[A = P{(1 + \dfrac{r}{n})^{n\,t}}\]
Where,
\[A = \]Final Amount
\[P = \]Principal Amount
\[r = \]Rate of interest
\[n = \]Number of times interest is to be compounded per year/annum
\[t = \]Time (in years)
For example, Rs.\[100\] compounded at \[10\% \] per annum for \[2\] year will result in:
\[ = 100{(1 + \dfrac{{10\% }}{1})^{(1)(2)}}\]
\[ = 100{(1 + 0.1)^2}\]
On simplifying in further we get
\[ = 100{(1.1)^2}\]
\[ = 100(1.21)\]
\[ = 121\]
Here, if the interest was to be compounded half-yearly, then \[n = 4\]as interest will be compounded four times over the two years half-yearly. Similarly, if it was quarterly, then \[n = 8\].
Now we can solve the sum as follows:
The loan taken will become our principal amount and rate of interest is given to be compounded annually. Hence-
\[P = 16,000\]
\[n = 1\] (annually)
\[t = 3\] (years)
\[r = 12\dfrac{1}{2}\% = 0.125\]
Applying the formula, we get,
\[A = P{(1 + \dfrac{r}{n})^{n\,t}}\]
\[A = 16000{(1 + \dfrac{{0.125}}{1})^{(1)(3)}}\]
\[A = 16000{(1 + 0.125)^3}\]
On simplifying in further we get
\[A = 16000{(1.125)^3}\]
\[A = 16000(1.4238)\]
\[A = 22781.25\]
Now Compound Interest (CI) can be found out as follows:
\[CI = A - P\]
\[CI = 22781.25 - 16000\]
\[CI = 6781.25\]
Hence compounded Interest will be \[Rs.6781.25\] over the period of three years. Therefore, Option (A) is correct.
Note:
We can also apply the following formula to solve the sum directly:
\[CI = P[{(1 + \dfrac{r}{{100}})^n} - 1]\] where \[n = \]number of years
\[CI = 16000[{(1 + \dfrac{{12.5}}{{100}})^3} - 1]\]
\[CI = 16000[{(1 + 0.125)^3} - 1]\]
On simplifying in further we get
\[CI = 16000[{(1.125)^3} - 1]\]
\[CI = 16000[1.4238 - 1]\]
\[CI = 16000[0.4238]\]
\[CI = 6780.8\]
Difference of \[6781.25 - 6780.8 = 0.45\] in the answer is due to decimal points.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE