Answer
Verified
499.2k+ views
Hint: We have to calculate the money that Rs500 will amount to after 10 years if the bank pays an annual interest of 10% which is compounded annually. Thus Rs500 will be our principal amount. Use the direct formula for compound interest, this will help you get the final amount after 10 years.
The amount which is getting deposited in the bank is Rs500, thus principal value P=Rs500………. (1)
Now the rate of interest provided by the bank compounded annually is 10%, r=10%................. (2)
The tenure for which the applicant is depositing his money into the bank is 10years, T=10 years…… (3)
Now the formula for compound interest is $A = P{\left( {1 + \dfrac{r}{{100}}} \right)^T}$ where A is the amount that the depositor will be getting, P is the principal value deposited into the bank, r is the rate of interest and T is the tenure for which the amount is deposited.
Substituting the values using equation (1), (2) and (3) we get
$A = 500{\left( {1 + \dfrac{{10}}{{100}}} \right)^{10}}$
$ \Rightarrow A = 500{\left( {1 + 0.1} \right)^{10}}$
$ \Rightarrow A = 500{\left( {1.1} \right)^{10}}$
Thus on solving we get $A = 1296.87$
Hence the depositor will be getting RS1269.87 if he deposits an amount of Rs500 for 10 years in a bank which gives an interest of 10% compounded annually.
Note: Whenever we face such types of problems the key point that we need to understand is about the principal value and the tenure of the amount in the bank. The tenure should always be in years, in some questions it may be in months thus simply convert it to year.
The amount which is getting deposited in the bank is Rs500, thus principal value P=Rs500………. (1)
Now the rate of interest provided by the bank compounded annually is 10%, r=10%................. (2)
The tenure for which the applicant is depositing his money into the bank is 10years, T=10 years…… (3)
Now the formula for compound interest is $A = P{\left( {1 + \dfrac{r}{{100}}} \right)^T}$ where A is the amount that the depositor will be getting, P is the principal value deposited into the bank, r is the rate of interest and T is the tenure for which the amount is deposited.
Substituting the values using equation (1), (2) and (3) we get
$A = 500{\left( {1 + \dfrac{{10}}{{100}}} \right)^{10}}$
$ \Rightarrow A = 500{\left( {1 + 0.1} \right)^{10}}$
$ \Rightarrow A = 500{\left( {1.1} \right)^{10}}$
Thus on solving we get $A = 1296.87$
Hence the depositor will be getting RS1269.87 if he deposits an amount of Rs500 for 10 years in a bank which gives an interest of 10% compounded annually.
Note: Whenever we face such types of problems the key point that we need to understand is about the principal value and the tenure of the amount in the bank. The tenure should always be in years, in some questions it may be in months thus simply convert it to year.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE