Answer
Verified
455.1k+ views
Hint: Find the incorrect value in the above given trigonometric functions. Use these formulas to find the incorrect one $ \sin \theta = \cos \left( {{{90}^ \circ } - \theta } \right),\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }} $
Complete step-by-step answer:
We are given four options and we have to find the incorrect one from them.
(A) $ \sin {37^ \circ } = \dfrac{3}{5} $
If a triangle has sides 3, 4, 5 then it is definitely a right angled triangle because the square of 5 is 25 which is equal to square of 3 and 4 which is 16, 9 and one angle of the triangle will be 90 as it is a right triangle and other angles will be 35 and 53 (measure using a protractor).
$ \sin \theta = \dfrac{{opp.side}}{{hypotenuse}} $
Opposite side of angle 37 is AB and hypotenuse is AC
$
\sin {37^ \circ } = \dfrac{{AB}}{{AC}} \\
AB = 3,AC = 5 \\
\sin {37^ \circ } = \dfrac{3}{5} \\
$
Therefore, Option A is correct.
(B) $ \sin {53^ \circ } = \dfrac{4}{5} $
We got that $ \sin {37^ \circ } = \dfrac{3}{5} $ from the first option.
We know that $ \sin \theta = \cos \left( {{{90}^ \circ } - \theta } \right) $
So
$
\sin {37^ \circ } = \cos \left( {{{90}^ \circ } - {{37}^ \circ }} \right) \\
\sin {37^ \circ } = \cos {53^ \circ } = \dfrac{3}{5} \\
$
By Pythagorean trigonometric identity we have $ {\sin ^2}\theta + {\cos ^2}\theta = 1 $
To calculate the value of $ \sin {53^ \circ } $ substitute the value of $ \cos {53^ \circ } $ in the above identity.
$
{\sin ^2}{53^ \circ } + {\cos ^2}{53^ \circ } = 1 \\
\cos {53^ \circ } = \dfrac{3}{5} \\
{\sin ^2}{53^ \circ } + {\left( {\dfrac{3}{5}} \right)^2} = 1 \\
{\sin ^2}{53^ \circ } = 1 - {\left( {\dfrac{3}{5}} \right)^2} = 1 - \dfrac{9}{{25}} \\
{\sin ^2}{53^ \circ } = \dfrac{{25 - 9}}{{25}} = \dfrac{{16}}{{25}} \\
{\sin ^2}{53^ \circ } = {\left( {\dfrac{4}{5}} \right)^2} \\
\sin {53^ \circ } = \dfrac{4}{5} \\
$
Therefore, Option B is also correct.
(C) $ \tan {37^ \circ } = \dfrac{4}{3} $
We know that tangent function is the ratio of sine function and cosine function.
$ \tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }} $
$ \tan {37^ \circ } = \dfrac{{\sin {{37}^ \circ }}}{{\cos {{37}^ \circ }}} $
$ \sin {37^ \circ } = \dfrac{3}{5} $ From the first option.
$
\cos \theta = \sin \left( {{{90}^ \circ } - \theta } \right) \\
\cos {37^ \circ } = \sin \left( {{{90}^ \circ } - {{37}^ \circ }} \right) \\
\cos {37^ \circ } = \sin \left( {{{53}^ \circ }} \right) \\
$
$ \sin {53^ \circ } = \dfrac{4}{5} $ From the second option.
Therefore $ \cos {37^ \circ } = \dfrac{4}{5} $
$ \tan {37^ \circ } = \dfrac{{\sin {{37}^ \circ }}}{{\cos {{37}^ \circ }}} = \dfrac{{\dfrac{3}{5}}}{{\dfrac{4}{5}}} = \dfrac{3}{4} $
But given that $ \tan {37^ \circ } = \dfrac{4}{3} $ in the first equation which is incorrect.
Therefore Option C is incorrect.
(D) $ \cos {30^ \circ } = \dfrac{{\sqrt 3 }}{2} $
From the triangle, when the sides are 1, √3, 2 then the angles of the triangle are 30, 60, 90.
$ \cos \theta = \dfrac{{adj.side}}{{hypotenuse}} $
Adjacent side of angle 30 is BC and the hypotenuse is AC.
$
\cos {30^ \circ } = \dfrac{{BC}}{{AC}} \\
\cos {30^ \circ } = \dfrac{{BC}}{{AC}} \\
BC = \sqrt 3 ,AC = 2 \\
\cos {30^ \circ } = \dfrac{{\sqrt 3 }}{2} \\
$
Therefore, Option D is also correct.
Options A, B and D are correct and Option C is incorrect.
So, the correct answer is “Option A,B AND D”.
Note: Trigonometry studies relationships between side lengths and angles. In trigonometry, there are three pairs of co-functions. They are sin-cos, tan-cot, cosec-sec. For these co-functions the value of one co-function of x is equal to the value of other cofunction of 90-x.
Complete step-by-step answer:
We are given four options and we have to find the incorrect one from them.
(A) $ \sin {37^ \circ } = \dfrac{3}{5} $
If a triangle has sides 3, 4, 5 then it is definitely a right angled triangle because the square of 5 is 25 which is equal to square of 3 and 4 which is 16, 9 and one angle of the triangle will be 90 as it is a right triangle and other angles will be 35 and 53 (measure using a protractor).
$ \sin \theta = \dfrac{{opp.side}}{{hypotenuse}} $
Opposite side of angle 37 is AB and hypotenuse is AC
$
\sin {37^ \circ } = \dfrac{{AB}}{{AC}} \\
AB = 3,AC = 5 \\
\sin {37^ \circ } = \dfrac{3}{5} \\
$
Therefore, Option A is correct.
(B) $ \sin {53^ \circ } = \dfrac{4}{5} $
We got that $ \sin {37^ \circ } = \dfrac{3}{5} $ from the first option.
We know that $ \sin \theta = \cos \left( {{{90}^ \circ } - \theta } \right) $
So
$
\sin {37^ \circ } = \cos \left( {{{90}^ \circ } - {{37}^ \circ }} \right) \\
\sin {37^ \circ } = \cos {53^ \circ } = \dfrac{3}{5} \\
$
By Pythagorean trigonometric identity we have $ {\sin ^2}\theta + {\cos ^2}\theta = 1 $
To calculate the value of $ \sin {53^ \circ } $ substitute the value of $ \cos {53^ \circ } $ in the above identity.
$
{\sin ^2}{53^ \circ } + {\cos ^2}{53^ \circ } = 1 \\
\cos {53^ \circ } = \dfrac{3}{5} \\
{\sin ^2}{53^ \circ } + {\left( {\dfrac{3}{5}} \right)^2} = 1 \\
{\sin ^2}{53^ \circ } = 1 - {\left( {\dfrac{3}{5}} \right)^2} = 1 - \dfrac{9}{{25}} \\
{\sin ^2}{53^ \circ } = \dfrac{{25 - 9}}{{25}} = \dfrac{{16}}{{25}} \\
{\sin ^2}{53^ \circ } = {\left( {\dfrac{4}{5}} \right)^2} \\
\sin {53^ \circ } = \dfrac{4}{5} \\
$
Therefore, Option B is also correct.
(C) $ \tan {37^ \circ } = \dfrac{4}{3} $
We know that tangent function is the ratio of sine function and cosine function.
$ \tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }} $
$ \tan {37^ \circ } = \dfrac{{\sin {{37}^ \circ }}}{{\cos {{37}^ \circ }}} $
$ \sin {37^ \circ } = \dfrac{3}{5} $ From the first option.
$
\cos \theta = \sin \left( {{{90}^ \circ } - \theta } \right) \\
\cos {37^ \circ } = \sin \left( {{{90}^ \circ } - {{37}^ \circ }} \right) \\
\cos {37^ \circ } = \sin \left( {{{53}^ \circ }} \right) \\
$
$ \sin {53^ \circ } = \dfrac{4}{5} $ From the second option.
Therefore $ \cos {37^ \circ } = \dfrac{4}{5} $
$ \tan {37^ \circ } = \dfrac{{\sin {{37}^ \circ }}}{{\cos {{37}^ \circ }}} = \dfrac{{\dfrac{3}{5}}}{{\dfrac{4}{5}}} = \dfrac{3}{4} $
But given that $ \tan {37^ \circ } = \dfrac{4}{3} $ in the first equation which is incorrect.
Therefore Option C is incorrect.
(D) $ \cos {30^ \circ } = \dfrac{{\sqrt 3 }}{2} $
From the triangle, when the sides are 1, √3, 2 then the angles of the triangle are 30, 60, 90.
$ \cos \theta = \dfrac{{adj.side}}{{hypotenuse}} $
Adjacent side of angle 30 is BC and the hypotenuse is AC.
$
\cos {30^ \circ } = \dfrac{{BC}}{{AC}} \\
\cos {30^ \circ } = \dfrac{{BC}}{{AC}} \\
BC = \sqrt 3 ,AC = 2 \\
\cos {30^ \circ } = \dfrac{{\sqrt 3 }}{2} \\
$
Therefore, Option D is also correct.
Options A, B and D are correct and Option C is incorrect.
So, the correct answer is “Option A,B AND D”.
Note: Trigonometry studies relationships between side lengths and angles. In trigonometry, there are three pairs of co-functions. They are sin-cos, tan-cot, cosec-sec. For these co-functions the value of one co-function of x is equal to the value of other cofunction of 90-x.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
What is BLO What is the full form of BLO class 8 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE