Answer
Verified
469.2k+ views
Hint: We will use the vector dot and cross product formula $|\overrightarrow A .\overrightarrow B | = AB|\cos \theta |$ and $|\overrightarrow A \times \overrightarrow B | = AB|\sin \theta |$ respectively, and then apply that value of sin and cos is always less than or equal to 1. Similarly we check the option C and option D to find the incorrect answer.
Complete step by step answer:
Now from the question, we have
$|\overrightarrow A .\overrightarrow B | = AB|\cos \theta |$
As $\cos \theta \leqslant 1$ so $|\overrightarrow A .\overrightarrow B | \leqslant AB$. So option A. is correct
Now, $|\overrightarrow A \times \overrightarrow B | = AB|\sin \theta |$
As $\sin \theta \leqslant 1$ so $|\overrightarrow A \times \overrightarrow B | \leqslant AB$. So option B. is also correct
When a vector is slid parallel to itself, the vector becomes Acos${0^0}$ = A, it remains the same. So option C. is correct.
When a vector A. is rotated through an angle of ${360^0}$ the vector becomes Acos${360^0}$ = A, it means it remains the same.
Therefore, option D is incorrect
Hence option D. is the correct option.
Note:
A vector is an object that has both the direction and therefore the magnitude. The length indicates the magnitude of the vectors, whereas the arrow indicates the direction. There are differing types of vectors. Generally , there are two ways of multiplying vectors.
(i) scalar product of vectors (also referred to as Scalar product)
(ii) vector product of vectors (also referred to as Vector product).
Cross product
The cross product of two vectors a and b is given by a vector whose magnitude is given by |a||b|sin$\theta $(where ${0^0} \leqslant \theta \leqslant {180^0}$) which represents the angle between the 2 vectors and therefore the direction of the resultant vector is given by a unit vector n^ whose direction is perpendicular to both the vectors a and b in such how that a, b and $\mathop n\limits^\^ $ are oriented in right-handed system.
Dot product
The inner product of two vectors a and b of magnitude |a| and |b| is given as |a||b| cos$\theta $, where $\theta $represents the angle between the vectors a and b taken within the direction of the vectors.
We can express the inner product as:
a.b=|a||b| cos$\theta $
where |a| and |b| represent the magnitude of the vectors a and b while cos$\theta $ denotes the cosine of the angle between both the vectors and a.b indicate the scalar product of the 2 vectors.
Complete step by step answer:
Now from the question, we have
$|\overrightarrow A .\overrightarrow B | = AB|\cos \theta |$
As $\cos \theta \leqslant 1$ so $|\overrightarrow A .\overrightarrow B | \leqslant AB$. So option A. is correct
Now, $|\overrightarrow A \times \overrightarrow B | = AB|\sin \theta |$
As $\sin \theta \leqslant 1$ so $|\overrightarrow A \times \overrightarrow B | \leqslant AB$. So option B. is also correct
When a vector is slid parallel to itself, the vector becomes Acos${0^0}$ = A, it remains the same. So option C. is correct.
When a vector A. is rotated through an angle of ${360^0}$ the vector becomes Acos${360^0}$ = A, it means it remains the same.
Therefore, option D is incorrect
Hence option D. is the correct option.
Note:
A vector is an object that has both the direction and therefore the magnitude. The length indicates the magnitude of the vectors, whereas the arrow indicates the direction. There are differing types of vectors. Generally , there are two ways of multiplying vectors.
(i) scalar product of vectors (also referred to as Scalar product)
(ii) vector product of vectors (also referred to as Vector product).
Cross product
The cross product of two vectors a and b is given by a vector whose magnitude is given by |a||b|sin$\theta $(where ${0^0} \leqslant \theta \leqslant {180^0}$) which represents the angle between the 2 vectors and therefore the direction of the resultant vector is given by a unit vector n^ whose direction is perpendicular to both the vectors a and b in such how that a, b and $\mathop n\limits^\^ $ are oriented in right-handed system.
Dot product
The inner product of two vectors a and b of magnitude |a| and |b| is given as |a||b| cos$\theta $, where $\theta $represents the angle between the vectors a and b taken within the direction of the vectors.
We can express the inner product as:
a.b=|a||b| cos$\theta $
where |a| and |b| represent the magnitude of the vectors a and b while cos$\theta $ denotes the cosine of the angle between both the vectors and a.b indicate the scalar product of the 2 vectors.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE