Answer
Verified
498.6k+ views
Hint: For a two digit number ‘ab’, the value is equal to (10a + b). When we reverse the digits it becomes ‘ba’, which is equal to (10b + a).
Complete step-by-step answer:
Let the original number be ‘xy, ‘y’ at one’s place and ‘x’ at ten’s place.
$ \Rightarrow $ Value of original two digit number = 10x + y
After reversing the digits, we get number ‘yx’, one’s place and ten’s place interchanged.
$ \Rightarrow $ Value of reversed number = 10y + x
From the given information, seven times the original number is equal to four times the reversed number.
$ \Rightarrow $ 7(10x + y) = 4(10y + x)
On simplification, we get
$ \Rightarrow $ 70x + 7y = 40y + 4x
$ \Rightarrow $ 66x = 33y
$ \Rightarrow $ y = 2x …. (1)
It is clear from the equation (1) that $y > x$.
It is given that the difference of digits is 3. So we can write
y – x = 3
Substituting ‘y’ value from equation (1)
$ \Rightarrow $ 2x – x = 3
$ \Rightarrow $ x = 3
So y = 2x = 2(3) = 6
$$\therefore $$ The original two digit number is 36 and reversed number is 63.
Note: We have to clearly understand the given conditions on digits of the number, so that we can form equations with variables to get required values. After solving the equations we will end up with variable values which in turn give us the required number. After getting the numbers we can cross check with the given conditions.
Finally we got the original number as 36 and reversed number is 63.
When we check the first given condition, 7 times the original number is equal to 4 times the reversed number.
7(36) = 252 = 4(63) Verified.
The second condition, the difference between digits 6 – 3 = 3 Verified.
Complete step-by-step answer:
Let the original number be ‘xy, ‘y’ at one’s place and ‘x’ at ten’s place.
$ \Rightarrow $ Value of original two digit number = 10x + y
After reversing the digits, we get number ‘yx’, one’s place and ten’s place interchanged.
$ \Rightarrow $ Value of reversed number = 10y + x
From the given information, seven times the original number is equal to four times the reversed number.
$ \Rightarrow $ 7(10x + y) = 4(10y + x)
On simplification, we get
$ \Rightarrow $ 70x + 7y = 40y + 4x
$ \Rightarrow $ 66x = 33y
$ \Rightarrow $ y = 2x …. (1)
It is clear from the equation (1) that $y > x$.
It is given that the difference of digits is 3. So we can write
y – x = 3
Substituting ‘y’ value from equation (1)
$ \Rightarrow $ 2x – x = 3
$ \Rightarrow $ x = 3
So y = 2x = 2(3) = 6
$$\therefore $$ The original two digit number is 36 and reversed number is 63.
Note: We have to clearly understand the given conditions on digits of the number, so that we can form equations with variables to get required values. After solving the equations we will end up with variable values which in turn give us the required number. After getting the numbers we can cross check with the given conditions.
Finally we got the original number as 36 and reversed number is 63.
When we check the first given condition, 7 times the original number is equal to 4 times the reversed number.
7(36) = 252 = 4(63) Verified.
The second condition, the difference between digits 6 – 3 = 3 Verified.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Discuss the main reasons for poverty in India
Write a letter to the principal requesting him to grant class 10 english CBSE