Answer
Verified
446.7k+ views
Hint: The valence shell electron pair repulsion (VSEPR) theory is used to determine the shape of molecules. According to VSEPR theory the lone pair-lone pair has the maximum repulsion followed by the bond pair-lone pair and bond pair –bond pair. In $\text{ Cl}{{\text{F}}_{\text{3}}}\text{ }$ two lone pairs are placed in axial plane which minimises the repulsion and stabilises the molecule.
Complete Solution :
In$\text{ Cl}{{\text{F}}_{\text{3 }}}$, the chlorine is a central atom. The electronic configuration of chlorine atom is as below:
$\text{ Cl = 1}{{\text{s}}^{\text{2}}}\text{ 2}{{\text{s}}^{\text{2}}}\text{ 2}{{\text{p}}^{\text{6 }}}\text{3}{{\text{s}}^{\text{2}}}\text{ 3}{{\text{p}}^{\text{5}}}\text{ }$
Chlorine atom has seven valence electrons. In $\text{ Cl}{{\text{F}}_{\text{3 }}}$ molecule, the central chlorine atom is surrounded by three fluorine atoms. Each fluorine atom shares a one electron with chlorine atom and results in three covalent $\text{ Cl}-\text{F }$ bonds.
The $\text{ Cl}{{\text{F}}_{\text{3 }}}$ molecule has 7 valence electrons from chlorine and three from Fluorine. Thus there are a total 10 electrons around the central chlorine atom.
Now let’s determine the electron pair in $\text{ Cl}{{\text{F}}_{\text{3 }}}$ molecule. Divide total number of electrons by 2.
$\text{ Electron pair = }\dfrac{10}{2}=\text{ 5 }{{\text{e}}^{-\text{ }}}$
There are a total of 5 electron pairs in $\text{ Cl}{{\text{F}}_{\text{3 }}}$ molecule. Let’s calculate the number of lone pairs in the $\text{ Cl}{{\text{F}}_{\text{3 }}}$molecule. The lone pair of electrons can be determined by subtraction of the number of bond pairs from the electron pair. As follows:
$\text{ Lone pair = Electron pair} - \text{Lone pair = 5} - \text{3 = 2 }$
Now we know that $\text{ Cl}{{\text{F}}_{\text{3 }}}$ molecule has three bonding pairs and two lone pairs. Now according to VSEPR theory the lone pair –lone pair experience the maximum repulsion which can be reduced by placing two lone pairs in the axial plane. The shape of $\text{ Cl}{{\text{F}}_{\text{3 }}}$ molecule is as shown below:
Therefore, $\text{ Cl}{{\text{F}}_{\text{3 }}}$ molecule shows T-shaped geometry.
So, the correct answer is “Option C”.
Note: From local observation, we can say that $\text{ Cl}{{\text{F}}_{\text{3 }}}$ is a trigonal planar molecule. But, one should always consider the lone pair on the central atom. The number of lone pairs can be determined by a formula.
$\begin{align}
& \text{ No}\text{.of LP = BP + }\dfrac{1}{2}\left[ \text{Group attached}-\text{Valency }\pm \text{ Charge} \right] \\
& \Rightarrow \text{No}\text{.of LP }=\text{ 3 + }\dfrac{1}{2}\left[ 5-\text{7} \right] \\
& \therefore \text{No}\text{.of LP in Cl}{{\text{F}}_{\text{3}}}=\text{ 3 }-1\text{ = 2 L}\text{.P}\text{.} \\
\end{align}$
Complete Solution :
In$\text{ Cl}{{\text{F}}_{\text{3 }}}$, the chlorine is a central atom. The electronic configuration of chlorine atom is as below:
$\text{ Cl = 1}{{\text{s}}^{\text{2}}}\text{ 2}{{\text{s}}^{\text{2}}}\text{ 2}{{\text{p}}^{\text{6 }}}\text{3}{{\text{s}}^{\text{2}}}\text{ 3}{{\text{p}}^{\text{5}}}\text{ }$
Chlorine atom has seven valence electrons. In $\text{ Cl}{{\text{F}}_{\text{3 }}}$ molecule, the central chlorine atom is surrounded by three fluorine atoms. Each fluorine atom shares a one electron with chlorine atom and results in three covalent $\text{ Cl}-\text{F }$ bonds.
The $\text{ Cl}{{\text{F}}_{\text{3 }}}$ molecule has 7 valence electrons from chlorine and three from Fluorine. Thus there are a total 10 electrons around the central chlorine atom.
Now let’s determine the electron pair in $\text{ Cl}{{\text{F}}_{\text{3 }}}$ molecule. Divide total number of electrons by 2.
$\text{ Electron pair = }\dfrac{10}{2}=\text{ 5 }{{\text{e}}^{-\text{ }}}$
There are a total of 5 electron pairs in $\text{ Cl}{{\text{F}}_{\text{3 }}}$ molecule. Let’s calculate the number of lone pairs in the $\text{ Cl}{{\text{F}}_{\text{3 }}}$molecule. The lone pair of electrons can be determined by subtraction of the number of bond pairs from the electron pair. As follows:
$\text{ Lone pair = Electron pair} - \text{Lone pair = 5} - \text{3 = 2 }$
Now we know that $\text{ Cl}{{\text{F}}_{\text{3 }}}$ molecule has three bonding pairs and two lone pairs. Now according to VSEPR theory the lone pair –lone pair experience the maximum repulsion which can be reduced by placing two lone pairs in the axial plane. The shape of $\text{ Cl}{{\text{F}}_{\text{3 }}}$ molecule is as shown below:
Therefore, $\text{ Cl}{{\text{F}}_{\text{3 }}}$ molecule shows T-shaped geometry.
So, the correct answer is “Option C”.
Note: From local observation, we can say that $\text{ Cl}{{\text{F}}_{\text{3 }}}$ is a trigonal planar molecule. But, one should always consider the lone pair on the central atom. The number of lone pairs can be determined by a formula.
$\begin{align}
& \text{ No}\text{.of LP = BP + }\dfrac{1}{2}\left[ \text{Group attached}-\text{Valency }\pm \text{ Charge} \right] \\
& \Rightarrow \text{No}\text{.of LP }=\text{ 3 + }\dfrac{1}{2}\left[ 5-\text{7} \right] \\
& \therefore \text{No}\text{.of LP in Cl}{{\text{F}}_{\text{3}}}=\text{ 3 }-1\text{ = 2 L}\text{.P}\text{.} \\
\end{align}$
Recently Updated Pages
Master Class 9 Science: Engaging Questions & Answers for Success
Master Class 9 English: Engaging Questions & Answers for Success
Class 9 Question and Answer - Your Ultimate Solutions Guide
Master Class 9 Maths: Engaging Questions & Answers for Success
Master Class 9 General Knowledge: Engaging Questions & Answers for Success
Class 10 Question and Answer - Your Ultimate Solutions Guide
Trending doubts
Pigmented layer in the eye is called as a Cornea b class 11 biology CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
What organs are located on the left side of your body class 11 biology CBSE
The lightest gas is A nitrogen B helium C oxygen D class 11 chemistry CBSE
What are ekaboron ekaaluminium and ekasilicon class 11 chemistry CBSE
Three moles of B2H6 are completely reacted with methanol class 11 chemistry CBSE