Answer
Verified
410.4k+ views
Hint: First of all consider tangent inverse of $x$ and tangent inverse of $y$ to be some variable. Then from the consideration find the value of $x\;{\text{and}}\;y$ and then use the addition or subtraction formula of tangent with both considered variables. After expanding the addition or subtraction formula of tangent replace the variables and replace the considered variables with original ones.
Addition or subtraction formula of tangent is given as
$\tan (a \pm b) = \dfrac{{\tan a \pm \tan b}}{{1 \mp \tan a\tan b}}$
Formula used:
Addition formula of the tangent function: $\tan (a + b) = \dfrac{{\tan a + \tan b}}{{1 - \tan a\tan b}}$
Subtraction formula of the tangent function: $\tan (a - b) = \dfrac{{\tan a - \tan b}}{{1 + \tan a\tan b}}$
Complete step by step solution:
To prove the given trigonometric equation $\arctan (x) \pm \arctan (y) = \arctan \left[ {\dfrac{{x \pm y}}{{1 \mp xy}}} \right]$ we will first consider ${\tan ^{ - 1}}x = a\;{\text{and}}\;{\tan ^{ - 1}}y = b$
So we can also write $\tan a = x\;{\text{and}}\;\tan b = y - - - - - (i)$
Now, from the addition or subtraction formula of tangent function, we know that
\[ \Rightarrow \tan (a \pm b) = \dfrac{{\tan a \pm \tan b}}{{1 \mp \tan a\tan b}}\]
Taking both sides inverse tangent function, we will get
\[
\Rightarrow {\tan ^{ - 1}}\left( {\tan (a \pm b)} \right) = {\tan ^{ - 1}}\left( {\dfrac{{\tan a \pm \tan b}}{{1 \mp \tan a\tan b}}} \right) \\
\Rightarrow a \pm b = {\tan ^{ - 1}}\left( {\dfrac{{\tan a \pm \tan b}}{{1 \mp \tan a\tan b}}} \right) \\
\]
Now replacing the considered variables, that is putting ${\tan ^{ - 1}}x = a\;{\text{and}}\;{\tan ^{ - 1}}y = b$ in the equation we will get
\[ \Rightarrow {\tan ^{ - 1}}x \pm {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{\tan a \pm \tan b}}{{1 \mp \tan a\tan b}}} \right)\]
And from equation (i), we can further write it as
\[ \Rightarrow {\tan ^{ - 1}}x \pm {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x \pm y}}{{1 \mp xy}}} \right)\]
In trigonometry we also denote inverse function of an trigonometric function with prefix “arc” in it, so using this, we can write
\[ \Rightarrow \arctan (x) \pm \arctan (y) = \arctan \left( {\dfrac{{x \pm y}}{{1 \mp xy}}} \right)\]
So we have proven the given trigonometric equation.
Note: The value of domain of “x” and “y” should lie such that their product should not be equals to one, because if their product is equals to one then the argument will become not defined. Also we cannot directly prove this problem so we have considered values first and then proved with help of trigonometric identity.
Domain of inverse tangent function is the set of real numbers whereas its range is given in the interval \[\left[ { - \dfrac{\pi }{2},\;\dfrac{\pi }{2}} \right]\]
Addition or subtraction formula of tangent is given as
$\tan (a \pm b) = \dfrac{{\tan a \pm \tan b}}{{1 \mp \tan a\tan b}}$
Formula used:
Addition formula of the tangent function: $\tan (a + b) = \dfrac{{\tan a + \tan b}}{{1 - \tan a\tan b}}$
Subtraction formula of the tangent function: $\tan (a - b) = \dfrac{{\tan a - \tan b}}{{1 + \tan a\tan b}}$
Complete step by step solution:
To prove the given trigonometric equation $\arctan (x) \pm \arctan (y) = \arctan \left[ {\dfrac{{x \pm y}}{{1 \mp xy}}} \right]$ we will first consider ${\tan ^{ - 1}}x = a\;{\text{and}}\;{\tan ^{ - 1}}y = b$
So we can also write $\tan a = x\;{\text{and}}\;\tan b = y - - - - - (i)$
Now, from the addition or subtraction formula of tangent function, we know that
\[ \Rightarrow \tan (a \pm b) = \dfrac{{\tan a \pm \tan b}}{{1 \mp \tan a\tan b}}\]
Taking both sides inverse tangent function, we will get
\[
\Rightarrow {\tan ^{ - 1}}\left( {\tan (a \pm b)} \right) = {\tan ^{ - 1}}\left( {\dfrac{{\tan a \pm \tan b}}{{1 \mp \tan a\tan b}}} \right) \\
\Rightarrow a \pm b = {\tan ^{ - 1}}\left( {\dfrac{{\tan a \pm \tan b}}{{1 \mp \tan a\tan b}}} \right) \\
\]
Now replacing the considered variables, that is putting ${\tan ^{ - 1}}x = a\;{\text{and}}\;{\tan ^{ - 1}}y = b$ in the equation we will get
\[ \Rightarrow {\tan ^{ - 1}}x \pm {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{\tan a \pm \tan b}}{{1 \mp \tan a\tan b}}} \right)\]
And from equation (i), we can further write it as
\[ \Rightarrow {\tan ^{ - 1}}x \pm {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x \pm y}}{{1 \mp xy}}} \right)\]
In trigonometry we also denote inverse function of an trigonometric function with prefix “arc” in it, so using this, we can write
\[ \Rightarrow \arctan (x) \pm \arctan (y) = \arctan \left( {\dfrac{{x \pm y}}{{1 \mp xy}}} \right)\]
So we have proven the given trigonometric equation.
Note: The value of domain of “x” and “y” should lie such that their product should not be equals to one, because if their product is equals to one then the argument will become not defined. Also we cannot directly prove this problem so we have considered values first and then proved with help of trigonometric identity.
Domain of inverse tangent function is the set of real numbers whereas its range is given in the interval \[\left[ { - \dfrac{\pi }{2},\;\dfrac{\pi }{2}} \right]\]
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE