Answer
Verified
420k+ views
Hint: First of all consider tangent inverse of $x$ and tangent inverse of $y$ to be some variable. Then from the consideration find the value of $x\;{\text{and}}\;y$ and then use the addition or subtraction formula of tangent with both considered variables. After expanding the addition or subtraction formula of tangent replace the variables and replace the considered variables with original ones.
Addition or subtraction formula of tangent is given as
$\tan (a \pm b) = \dfrac{{\tan a \pm \tan b}}{{1 \mp \tan a\tan b}}$
Formula used:
Addition formula of the tangent function: $\tan (a + b) = \dfrac{{\tan a + \tan b}}{{1 - \tan a\tan b}}$
Subtraction formula of the tangent function: $\tan (a - b) = \dfrac{{\tan a - \tan b}}{{1 + \tan a\tan b}}$
Complete step by step solution:
To prove the given trigonometric equation $\arctan (x) \pm \arctan (y) = \arctan \left[ {\dfrac{{x \pm y}}{{1 \mp xy}}} \right]$ we will first consider ${\tan ^{ - 1}}x = a\;{\text{and}}\;{\tan ^{ - 1}}y = b$
So we can also write $\tan a = x\;{\text{and}}\;\tan b = y - - - - - (i)$
Now, from the addition or subtraction formula of tangent function, we know that
\[ \Rightarrow \tan (a \pm b) = \dfrac{{\tan a \pm \tan b}}{{1 \mp \tan a\tan b}}\]
Taking both sides inverse tangent function, we will get
\[
\Rightarrow {\tan ^{ - 1}}\left( {\tan (a \pm b)} \right) = {\tan ^{ - 1}}\left( {\dfrac{{\tan a \pm \tan b}}{{1 \mp \tan a\tan b}}} \right) \\
\Rightarrow a \pm b = {\tan ^{ - 1}}\left( {\dfrac{{\tan a \pm \tan b}}{{1 \mp \tan a\tan b}}} \right) \\
\]
Now replacing the considered variables, that is putting ${\tan ^{ - 1}}x = a\;{\text{and}}\;{\tan ^{ - 1}}y = b$ in the equation we will get
\[ \Rightarrow {\tan ^{ - 1}}x \pm {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{\tan a \pm \tan b}}{{1 \mp \tan a\tan b}}} \right)\]
And from equation (i), we can further write it as
\[ \Rightarrow {\tan ^{ - 1}}x \pm {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x \pm y}}{{1 \mp xy}}} \right)\]
In trigonometry we also denote inverse function of an trigonometric function with prefix “arc” in it, so using this, we can write
\[ \Rightarrow \arctan (x) \pm \arctan (y) = \arctan \left( {\dfrac{{x \pm y}}{{1 \mp xy}}} \right)\]
So we have proven the given trigonometric equation.
Note: The value of domain of “x” and “y” should lie such that their product should not be equals to one, because if their product is equals to one then the argument will become not defined. Also we cannot directly prove this problem so we have considered values first and then proved with help of trigonometric identity.
Domain of inverse tangent function is the set of real numbers whereas its range is given in the interval \[\left[ { - \dfrac{\pi }{2},\;\dfrac{\pi }{2}} \right]\]
Addition or subtraction formula of tangent is given as
$\tan (a \pm b) = \dfrac{{\tan a \pm \tan b}}{{1 \mp \tan a\tan b}}$
Formula used:
Addition formula of the tangent function: $\tan (a + b) = \dfrac{{\tan a + \tan b}}{{1 - \tan a\tan b}}$
Subtraction formula of the tangent function: $\tan (a - b) = \dfrac{{\tan a - \tan b}}{{1 + \tan a\tan b}}$
Complete step by step solution:
To prove the given trigonometric equation $\arctan (x) \pm \arctan (y) = \arctan \left[ {\dfrac{{x \pm y}}{{1 \mp xy}}} \right]$ we will first consider ${\tan ^{ - 1}}x = a\;{\text{and}}\;{\tan ^{ - 1}}y = b$
So we can also write $\tan a = x\;{\text{and}}\;\tan b = y - - - - - (i)$
Now, from the addition or subtraction formula of tangent function, we know that
\[ \Rightarrow \tan (a \pm b) = \dfrac{{\tan a \pm \tan b}}{{1 \mp \tan a\tan b}}\]
Taking both sides inverse tangent function, we will get
\[
\Rightarrow {\tan ^{ - 1}}\left( {\tan (a \pm b)} \right) = {\tan ^{ - 1}}\left( {\dfrac{{\tan a \pm \tan b}}{{1 \mp \tan a\tan b}}} \right) \\
\Rightarrow a \pm b = {\tan ^{ - 1}}\left( {\dfrac{{\tan a \pm \tan b}}{{1 \mp \tan a\tan b}}} \right) \\
\]
Now replacing the considered variables, that is putting ${\tan ^{ - 1}}x = a\;{\text{and}}\;{\tan ^{ - 1}}y = b$ in the equation we will get
\[ \Rightarrow {\tan ^{ - 1}}x \pm {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{\tan a \pm \tan b}}{{1 \mp \tan a\tan b}}} \right)\]
And from equation (i), we can further write it as
\[ \Rightarrow {\tan ^{ - 1}}x \pm {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x \pm y}}{{1 \mp xy}}} \right)\]
In trigonometry we also denote inverse function of an trigonometric function with prefix “arc” in it, so using this, we can write
\[ \Rightarrow \arctan (x) \pm \arctan (y) = \arctan \left( {\dfrac{{x \pm y}}{{1 \mp xy}}} \right)\]
So we have proven the given trigonometric equation.
Note: The value of domain of “x” and “y” should lie such that their product should not be equals to one, because if their product is equals to one then the argument will become not defined. Also we cannot directly prove this problem so we have considered values first and then proved with help of trigonometric identity.
Domain of inverse tangent function is the set of real numbers whereas its range is given in the interval \[\left[ { - \dfrac{\pi }{2},\;\dfrac{\pi }{2}} \right]\]
Recently Updated Pages
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The term ISWM refers to A Integrated Solid Waste Machine class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the longest day and shortest night in the class 11 sst CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE