
Show that a median of a triangle divides it into two triangles of equal area.
Answer
430.6k+ views
Hint: To prove, we draw a median to the given triangle. We use the definition of median. Then we’ll have two triangles with a common vertex and bases of equal length. Find the area of one triangle and show it is equal to the other.
Complete Step-by-Step solution:
Let ABC be a triangle.
Let AD be one of its medians.
∆ABD and ∆ADC have the vertex A in common.
Hence, the bases BD and DC are equal (as AD is the median).
Now, draw a line AE perpendicular to BC, AE ⊥ BC.
We know the area of a triangle with base b and height h is =
Now area of triangle ∆ABD = × altitude of ∆ABD
=
= --- (Since BD = DC)
But DC and AE are the base and altitude of ∆ACD respectively.
Area of ∆ACD = × base DC × altitude of ∆ACD
=
Hence, area of (∆ABD) = area of (∆ACD)
Hence the median of a triangle divides it into two triangles of equal areas.
Note – The key in such problems is to draw a figure and include a median in it. This makes the figure into two triangles with a common vertex and equal bases.
Finding the area of one triangle and using the condition of equal bases gives us the proof.
(In geometry, a median of a triangle is a line segment joining a vertex to the midpoint of the opposite side, thus bisecting that side.)
Complete Step-by-Step solution:

Let ABC be a triangle.
Let AD be one of its medians.
∆ABD and ∆ADC have the vertex A in common.
Hence, the bases BD and DC are equal (as AD is the median).
Now, draw a line AE perpendicular to BC, AE ⊥ BC.
We know the area of a triangle with base b and height h is =
Now area of triangle ∆ABD =
=
=
But DC and AE are the base and altitude of ∆ACD respectively.
Area of ∆ACD =
=
Hence, area of (∆ABD) = area of (∆ACD)
Hence the median of a triangle divides it into two triangles of equal areas.
Note – The key in such problems is to draw a figure and include a median in it. This makes the figure into two triangles with a common vertex and equal bases.
Finding the area of one triangle and using the condition of equal bases gives us the proof.
(In geometry, a median of a triangle is a line segment joining a vertex to the midpoint of the opposite side, thus bisecting that side.)
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Trending doubts
A boat goes 24 km upstream and 28 km downstream in class 10 maths CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Chandigarh is the capital of A Punjab B Haryana C Punjab class 10 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Discuss the main reasons for poverty in India
