Answer
Verified
442.8k+ views
Hint: Firstly, we will construct a triangle whose angle equals to ${{60}^{\circ }}$ . after that, in triangle ABC, using the property of triangle which states that sides opposites to equal angles are equal, we will show that pairs of sides of the triangle are equal. Hence, we will show that ABC is an equilateral triangle.
Complete step-by-step solution:
Let, there be triangle ABC whose angles are equal to ${{60}^{\circ }}$.
Now, in triangle ABC, we have
$\angle B=\angle C$, as given in the question.
We know that there is a proven statement for general triangles that sides opposite to equal angles are also equal.
As the side opposite to $\angle B$ is AC and the side opposite to $\angle C$ is AB.
Then, we can say that
$AC = AB$.............( i )
Similarly, we can see from the figure that,
$\angle A=\angle C$
As the side opposite to $\angle A$ is BC and the side opposite to $\angle C$ is AB.
Using the same statement we used for the above equation, we can say that
$BC = AB$ …………..( ii )
From equation ( i ) and equation ( ii ), we can say that
$AB = BC = AC$
Also, we know that all sides of the equilateral triangle are equal.
Hence, we can say that every equiangular triangle is equilateral.
Note: Always remember that equiangular means angles of the same measure of a polygon. Also, vice versa of statement sides opposite to equal angles are also equal is true. To prove for all sides of the triangle equal, we need to prove at least two pairs of sides equal. Do not forget to draw a diagram and label it correctly.
Complete step-by-step solution:
Let, there be triangle ABC whose angles are equal to ${{60}^{\circ }}$.
Now, in triangle ABC, we have
$\angle B=\angle C$, as given in the question.
We know that there is a proven statement for general triangles that sides opposite to equal angles are also equal.
As the side opposite to $\angle B$ is AC and the side opposite to $\angle C$ is AB.
Then, we can say that
$AC = AB$.............( i )
Similarly, we can see from the figure that,
$\angle A=\angle C$
As the side opposite to $\angle A$ is BC and the side opposite to $\angle C$ is AB.
Using the same statement we used for the above equation, we can say that
$BC = AB$ …………..( ii )
From equation ( i ) and equation ( ii ), we can say that
$AB = BC = AC$
Also, we know that all sides of the equilateral triangle are equal.
Hence, we can say that every equiangular triangle is equilateral.
Note: Always remember that equiangular means angles of the same measure of a polygon. Also, vice versa of statement sides opposite to equal angles are also equal is true. To prove for all sides of the triangle equal, we need to prove at least two pairs of sides equal. Do not forget to draw a diagram and label it correctly.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
Derive an expression for drift velocity of free electrons class 12 physics CBSE
Which are the Top 10 Largest Countries of the World?
Write down 5 differences between Ntype and Ptype s class 11 physics CBSE
The energy of a charged conductor is given by the expression class 12 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Derive an expression for electric field intensity due class 12 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Derive an expression for electric potential at point class 12 physics CBSE