Answer
Verified
396.9k+ views
Hint: We must perform the following two column operations, ${{C}_{2}}\to {{C}_{2}}-{{C}_{3}}$ and ${{C}_{3}}\to {{C}_{3}}-{{C}_{1}}$. Then, by using the expansion formulae ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$ and ${{a}^{3}}-{{b}^{3}}=\left( a-b \right)\left( {{a}^{2}}+{{b}^{2}}+ab \right)$, we can simplify the determinant to prove that it is equal to the given expression.
Complete step-by-step solution:
Let us assume a variable D that is equal to the given determinant, that is,
$D=\left| \begin{matrix}
1 & 1 & 1 \\
{{x}^{2}} & {{y}^{2}} & {{z}^{2}} \\
{{x}^{3}} & {{y}^{3}} & {{z}^{3}} \\
\end{matrix} \right|$
We also know that we can perform any row or column operation, without changing the value of determinant.
So, let us perform the column operation${{C}_{2}}\to {{C}_{2}}-{{C}_{3}}$. We now get,
\[D=\left| \begin{matrix}
1 & 0 & 1 \\
{{x}^{2}} & {{y}^{2}}-{{z}^{2}} & {{z}^{2}} \\
{{x}^{3}} & {{y}^{3}}-{{z}^{3}} & {{z}^{3}} \\
\end{matrix} \right|\]
Now, let us perform another column operation ${{C}_{3}}\to {{C}_{3}}-{{C}_{1}}$. Thus, we will get
\[D=\left| \begin{matrix}
1 & 0 & 0 \\
{{x}^{2}} & {{y}^{2}}-{{z}^{2}} & {{z}^{2}}-{{x}^{2}} \\
{{x}^{3}} & {{y}^{3}}-{{z}^{3}} & {{z}^{3}}-{{x}^{3}} \\
\end{matrix} \right|\]
We know the expansion formula ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$. Thus, we can easily write
\[{{y}^{2}}-{{z}^{2}}=\left( y+z \right)\left( y-z \right)\] and \[{{z}^{2}}-{{x}^{2}}=\left( z+x \right)\left( z-x \right)\].
We are also well aware about the expansion formula ${{a}^{3}}-{{b}^{3}}=\left( a-b \right)\left( {{a}^{2}}+{{b}^{2}}+ab \right)$.
Hence, we can write \[{{y}^{3}}-{{z}^{3}}=\left( y-z \right)\left( {{y}^{2}}+{{z}^{2}}+yz \right)\] and \[{{z}^{3}}-{{x}^{3}}=\left( z-x \right)\left( {{z}^{2}}+{{x}^{2}}+xz \right)\].
We can now substitute the value of all these expansions into the determinant. Thus, we get
\[D=\left| \begin{matrix}
1 & 0 & 0 \\
{{x}^{2}} & \left( y+z \right)\left( y-z \right) & \left( z+x \right)\left( z-x \right) \\
{{x}^{3}} & \left( y-z \right)\left( {{y}^{2}}+{{z}^{2}}+yz \right) & \left( z-x \right)\left( {{z}^{2}}+{{x}^{2}}+xz \right) \\
\end{matrix} \right|\]
We know that we can factor out the common terms from all the elements of a row or all the elements of a column.
We can see that the term $\left( y-z \right)$ can be taken as common from column 2. So, we get
\[D=\left( y-z \right)\left| \begin{matrix}
1 & 0 & 0 \\
{{x}^{2}} & \left( y+z \right) & \left( z+x \right)\left( z-x \right) \\
{{x}^{3}} & \left( {{y}^{2}}+{{z}^{2}}+yz \right) & \left( z-x \right)\left( {{z}^{2}}+{{x}^{2}}+xz \right) \\
\end{matrix} \right|\]
Also, we can see that the term $\left( z-x \right)$ can be taken as common from column 3. Hence, we get
\[D=\left( y-z \right)\left( z-x \right)\left| \begin{matrix}
1 & 0 & 0 \\
{{x}^{2}} & \left( y+z \right) & \left( z+x \right) \\
{{x}^{3}} & \left( {{y}^{2}}+{{z}^{2}}+yz \right) & \left( {{z}^{2}}+{{x}^{2}}+xz \right) \\
\end{matrix} \right|\]
Let us now solve the determinant. We can write
$D=\left( y-z \right)\left( z-x \right)\left[ 1\left\{ \left( y+z \right)\left( {{z}^{2}}+{{x}^{2}}+xz \right)-\left( z+x \right)\left( {{y}^{2}}+{{z}^{2}}+yz \right) \right\}-0+0 \right]$
Thus, we get
$D=\left( y-z \right)\left( z-x \right)\left[ \left( y+z \right)\left( {{z}^{2}}+{{x}^{2}}+xz \right)-\left( z+x \right)\left( {{y}^{2}}+{{z}^{2}}+yz \right) \right]$
We can multiply the expressions to get
$D=\left( y-z \right)\left( z-x \right)\left[ y{{z}^{2}}+{{x}^{2}}y+xyz+{{z}^{3}}+{{x}^{2}}z+x{{z}^{2}}-{{y}^{2}}z-{{z}^{3}}-y{{z}^{2}}-x{{y}^{2}}-x{{z}^{2}}-xyz \right]$
On simplification and cancelling the terms, we get
$D=\left( y-z \right)\left( z-x \right)\left[ {{x}^{2}}y+{{x}^{2}}z-{{y}^{2}}z-x{{y}^{2}} \right]$
We can rearrange these terms as follows,
$D=\left( y-z \right)\left( z-x \right)\left[ {{x}^{2}}y-x{{y}^{2}}+{{x}^{2}}z-{{y}^{2}}z \right]$
Thus, we can write
$D=\left( y-z \right)\left( z-x \right)\left[ xy\left( x-y \right)+z\left( {{x}^{2}}-{{y}^{2}} \right) \right]$
Again, using the expansion formula, we get
$D=\left( y-z \right)\left( z-x \right)\left[ xy\left( x-y \right)+z\left( x+y \right)\left( x-y \right) \right]$
Hence, we get
$D=\left( x-y \right)\left( y-z \right)\left( z-x \right)\left[ xy+z\left( x+y \right) \right]$
Or, we can write this as
$D=\left( x-y \right)\left( y-z \right)\left( z-x \right)\left( xy+yz+zx \right)$
Hence, we have proved that $\left| \begin{matrix}
1 & 1 & 1 \\
{{x}^{2}} & {{y}^{2}} & {{z}^{2}} \\
{{x}^{3}} & {{y}^{3}} & {{z}^{3}} \\
\end{matrix} \right|=\left( x-y \right)\left( y-z \right)\left( z-x \right)\left( xy+yz+zx \right)$.
Note: We must note the difference in the symbols of determinant and matrix. We also know that when we take something as common from a matrix, is taken from each and every element of that matrix. But, in case of determinant, the common is taken only from a row or column.
Complete step-by-step solution:
Let us assume a variable D that is equal to the given determinant, that is,
$D=\left| \begin{matrix}
1 & 1 & 1 \\
{{x}^{2}} & {{y}^{2}} & {{z}^{2}} \\
{{x}^{3}} & {{y}^{3}} & {{z}^{3}} \\
\end{matrix} \right|$
We also know that we can perform any row or column operation, without changing the value of determinant.
So, let us perform the column operation${{C}_{2}}\to {{C}_{2}}-{{C}_{3}}$. We now get,
\[D=\left| \begin{matrix}
1 & 0 & 1 \\
{{x}^{2}} & {{y}^{2}}-{{z}^{2}} & {{z}^{2}} \\
{{x}^{3}} & {{y}^{3}}-{{z}^{3}} & {{z}^{3}} \\
\end{matrix} \right|\]
Now, let us perform another column operation ${{C}_{3}}\to {{C}_{3}}-{{C}_{1}}$. Thus, we will get
\[D=\left| \begin{matrix}
1 & 0 & 0 \\
{{x}^{2}} & {{y}^{2}}-{{z}^{2}} & {{z}^{2}}-{{x}^{2}} \\
{{x}^{3}} & {{y}^{3}}-{{z}^{3}} & {{z}^{3}}-{{x}^{3}} \\
\end{matrix} \right|\]
We know the expansion formula ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$. Thus, we can easily write
\[{{y}^{2}}-{{z}^{2}}=\left( y+z \right)\left( y-z \right)\] and \[{{z}^{2}}-{{x}^{2}}=\left( z+x \right)\left( z-x \right)\].
We are also well aware about the expansion formula ${{a}^{3}}-{{b}^{3}}=\left( a-b \right)\left( {{a}^{2}}+{{b}^{2}}+ab \right)$.
Hence, we can write \[{{y}^{3}}-{{z}^{3}}=\left( y-z \right)\left( {{y}^{2}}+{{z}^{2}}+yz \right)\] and \[{{z}^{3}}-{{x}^{3}}=\left( z-x \right)\left( {{z}^{2}}+{{x}^{2}}+xz \right)\].
We can now substitute the value of all these expansions into the determinant. Thus, we get
\[D=\left| \begin{matrix}
1 & 0 & 0 \\
{{x}^{2}} & \left( y+z \right)\left( y-z \right) & \left( z+x \right)\left( z-x \right) \\
{{x}^{3}} & \left( y-z \right)\left( {{y}^{2}}+{{z}^{2}}+yz \right) & \left( z-x \right)\left( {{z}^{2}}+{{x}^{2}}+xz \right) \\
\end{matrix} \right|\]
We know that we can factor out the common terms from all the elements of a row or all the elements of a column.
We can see that the term $\left( y-z \right)$ can be taken as common from column 2. So, we get
\[D=\left( y-z \right)\left| \begin{matrix}
1 & 0 & 0 \\
{{x}^{2}} & \left( y+z \right) & \left( z+x \right)\left( z-x \right) \\
{{x}^{3}} & \left( {{y}^{2}}+{{z}^{2}}+yz \right) & \left( z-x \right)\left( {{z}^{2}}+{{x}^{2}}+xz \right) \\
\end{matrix} \right|\]
Also, we can see that the term $\left( z-x \right)$ can be taken as common from column 3. Hence, we get
\[D=\left( y-z \right)\left( z-x \right)\left| \begin{matrix}
1 & 0 & 0 \\
{{x}^{2}} & \left( y+z \right) & \left( z+x \right) \\
{{x}^{3}} & \left( {{y}^{2}}+{{z}^{2}}+yz \right) & \left( {{z}^{2}}+{{x}^{2}}+xz \right) \\
\end{matrix} \right|\]
Let us now solve the determinant. We can write
$D=\left( y-z \right)\left( z-x \right)\left[ 1\left\{ \left( y+z \right)\left( {{z}^{2}}+{{x}^{2}}+xz \right)-\left( z+x \right)\left( {{y}^{2}}+{{z}^{2}}+yz \right) \right\}-0+0 \right]$
Thus, we get
$D=\left( y-z \right)\left( z-x \right)\left[ \left( y+z \right)\left( {{z}^{2}}+{{x}^{2}}+xz \right)-\left( z+x \right)\left( {{y}^{2}}+{{z}^{2}}+yz \right) \right]$
We can multiply the expressions to get
$D=\left( y-z \right)\left( z-x \right)\left[ y{{z}^{2}}+{{x}^{2}}y+xyz+{{z}^{3}}+{{x}^{2}}z+x{{z}^{2}}-{{y}^{2}}z-{{z}^{3}}-y{{z}^{2}}-x{{y}^{2}}-x{{z}^{2}}-xyz \right]$
On simplification and cancelling the terms, we get
$D=\left( y-z \right)\left( z-x \right)\left[ {{x}^{2}}y+{{x}^{2}}z-{{y}^{2}}z-x{{y}^{2}} \right]$
We can rearrange these terms as follows,
$D=\left( y-z \right)\left( z-x \right)\left[ {{x}^{2}}y-x{{y}^{2}}+{{x}^{2}}z-{{y}^{2}}z \right]$
Thus, we can write
$D=\left( y-z \right)\left( z-x \right)\left[ xy\left( x-y \right)+z\left( {{x}^{2}}-{{y}^{2}} \right) \right]$
Again, using the expansion formula, we get
$D=\left( y-z \right)\left( z-x \right)\left[ xy\left( x-y \right)+z\left( x+y \right)\left( x-y \right) \right]$
Hence, we get
$D=\left( x-y \right)\left( y-z \right)\left( z-x \right)\left[ xy+z\left( x+y \right) \right]$
Or, we can write this as
$D=\left( x-y \right)\left( y-z \right)\left( z-x \right)\left( xy+yz+zx \right)$
Hence, we have proved that $\left| \begin{matrix}
1 & 1 & 1 \\
{{x}^{2}} & {{y}^{2}} & {{z}^{2}} \\
{{x}^{3}} & {{y}^{3}} & {{z}^{3}} \\
\end{matrix} \right|=\left( x-y \right)\left( y-z \right)\left( z-x \right)\left( xy+yz+zx \right)$.
Note: We must note the difference in the symbols of determinant and matrix. We also know that when we take something as common from a matrix, is taken from each and every element of that matrix. But, in case of determinant, the common is taken only from a row or column.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE