
Show that $\left| \begin{matrix}
1 & 1 & 1 \\
{{x}^{2}} & {{y}^{2}} & {{z}^{2}} \\
{{x}^{3}} & {{y}^{3}} & {{z}^{3}} \\
\end{matrix} \right|=\left( x-y \right)\left( y-z \right)\left( z-x \right)\left( xy+yz+zx \right)$.
Answer
519.3k+ views
Hint: We must perform the following two column operations, ${{C}_{2}}\to {{C}_{2}}-{{C}_{3}}$ and ${{C}_{3}}\to {{C}_{3}}-{{C}_{1}}$. Then, by using the expansion formulae ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$ and ${{a}^{3}}-{{b}^{3}}=\left( a-b \right)\left( {{a}^{2}}+{{b}^{2}}+ab \right)$, we can simplify the determinant to prove that it is equal to the given expression.
Complete step-by-step solution:
Let us assume a variable D that is equal to the given determinant, that is,
$D=\left| \begin{matrix}
1 & 1 & 1 \\
{{x}^{2}} & {{y}^{2}} & {{z}^{2}} \\
{{x}^{3}} & {{y}^{3}} & {{z}^{3}} \\
\end{matrix} \right|$
We also know that we can perform any row or column operation, without changing the value of determinant.
So, let us perform the column operation${{C}_{2}}\to {{C}_{2}}-{{C}_{3}}$. We now get,
\[D=\left| \begin{matrix}
1 & 0 & 1 \\
{{x}^{2}} & {{y}^{2}}-{{z}^{2}} & {{z}^{2}} \\
{{x}^{3}} & {{y}^{3}}-{{z}^{3}} & {{z}^{3}} \\
\end{matrix} \right|\]
Now, let us perform another column operation ${{C}_{3}}\to {{C}_{3}}-{{C}_{1}}$. Thus, we will get
\[D=\left| \begin{matrix}
1 & 0 & 0 \\
{{x}^{2}} & {{y}^{2}}-{{z}^{2}} & {{z}^{2}}-{{x}^{2}} \\
{{x}^{3}} & {{y}^{3}}-{{z}^{3}} & {{z}^{3}}-{{x}^{3}} \\
\end{matrix} \right|\]
We know the expansion formula ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$. Thus, we can easily write
\[{{y}^{2}}-{{z}^{2}}=\left( y+z \right)\left( y-z \right)\] and \[{{z}^{2}}-{{x}^{2}}=\left( z+x \right)\left( z-x \right)\].
We are also well aware about the expansion formula ${{a}^{3}}-{{b}^{3}}=\left( a-b \right)\left( {{a}^{2}}+{{b}^{2}}+ab \right)$.
Hence, we can write \[{{y}^{3}}-{{z}^{3}}=\left( y-z \right)\left( {{y}^{2}}+{{z}^{2}}+yz \right)\] and \[{{z}^{3}}-{{x}^{3}}=\left( z-x \right)\left( {{z}^{2}}+{{x}^{2}}+xz \right)\].
We can now substitute the value of all these expansions into the determinant. Thus, we get
\[D=\left| \begin{matrix}
1 & 0 & 0 \\
{{x}^{2}} & \left( y+z \right)\left( y-z \right) & \left( z+x \right)\left( z-x \right) \\
{{x}^{3}} & \left( y-z \right)\left( {{y}^{2}}+{{z}^{2}}+yz \right) & \left( z-x \right)\left( {{z}^{2}}+{{x}^{2}}+xz \right) \\
\end{matrix} \right|\]
We know that we can factor out the common terms from all the elements of a row or all the elements of a column.
We can see that the term $\left( y-z \right)$ can be taken as common from column 2. So, we get
\[D=\left( y-z \right)\left| \begin{matrix}
1 & 0 & 0 \\
{{x}^{2}} & \left( y+z \right) & \left( z+x \right)\left( z-x \right) \\
{{x}^{3}} & \left( {{y}^{2}}+{{z}^{2}}+yz \right) & \left( z-x \right)\left( {{z}^{2}}+{{x}^{2}}+xz \right) \\
\end{matrix} \right|\]
Also, we can see that the term $\left( z-x \right)$ can be taken as common from column 3. Hence, we get
\[D=\left( y-z \right)\left( z-x \right)\left| \begin{matrix}
1 & 0 & 0 \\
{{x}^{2}} & \left( y+z \right) & \left( z+x \right) \\
{{x}^{3}} & \left( {{y}^{2}}+{{z}^{2}}+yz \right) & \left( {{z}^{2}}+{{x}^{2}}+xz \right) \\
\end{matrix} \right|\]
Let us now solve the determinant. We can write
$D=\left( y-z \right)\left( z-x \right)\left[ 1\left\{ \left( y+z \right)\left( {{z}^{2}}+{{x}^{2}}+xz \right)-\left( z+x \right)\left( {{y}^{2}}+{{z}^{2}}+yz \right) \right\}-0+0 \right]$
Thus, we get
$D=\left( y-z \right)\left( z-x \right)\left[ \left( y+z \right)\left( {{z}^{2}}+{{x}^{2}}+xz \right)-\left( z+x \right)\left( {{y}^{2}}+{{z}^{2}}+yz \right) \right]$
We can multiply the expressions to get
$D=\left( y-z \right)\left( z-x \right)\left[ y{{z}^{2}}+{{x}^{2}}y+xyz+{{z}^{3}}+{{x}^{2}}z+x{{z}^{2}}-{{y}^{2}}z-{{z}^{3}}-y{{z}^{2}}-x{{y}^{2}}-x{{z}^{2}}-xyz \right]$
On simplification and cancelling the terms, we get
$D=\left( y-z \right)\left( z-x \right)\left[ {{x}^{2}}y+{{x}^{2}}z-{{y}^{2}}z-x{{y}^{2}} \right]$
We can rearrange these terms as follows,
$D=\left( y-z \right)\left( z-x \right)\left[ {{x}^{2}}y-x{{y}^{2}}+{{x}^{2}}z-{{y}^{2}}z \right]$
Thus, we can write
$D=\left( y-z \right)\left( z-x \right)\left[ xy\left( x-y \right)+z\left( {{x}^{2}}-{{y}^{2}} \right) \right]$
Again, using the expansion formula, we get
$D=\left( y-z \right)\left( z-x \right)\left[ xy\left( x-y \right)+z\left( x+y \right)\left( x-y \right) \right]$
Hence, we get
$D=\left( x-y \right)\left( y-z \right)\left( z-x \right)\left[ xy+z\left( x+y \right) \right]$
Or, we can write this as
$D=\left( x-y \right)\left( y-z \right)\left( z-x \right)\left( xy+yz+zx \right)$
Hence, we have proved that $\left| \begin{matrix}
1 & 1 & 1 \\
{{x}^{2}} & {{y}^{2}} & {{z}^{2}} \\
{{x}^{3}} & {{y}^{3}} & {{z}^{3}} \\
\end{matrix} \right|=\left( x-y \right)\left( y-z \right)\left( z-x \right)\left( xy+yz+zx \right)$.
Note: We must note the difference in the symbols of determinant and matrix. We also know that when we take something as common from a matrix, is taken from each and every element of that matrix. But, in case of determinant, the common is taken only from a row or column.
Complete step-by-step solution:
Let us assume a variable D that is equal to the given determinant, that is,
$D=\left| \begin{matrix}
1 & 1 & 1 \\
{{x}^{2}} & {{y}^{2}} & {{z}^{2}} \\
{{x}^{3}} & {{y}^{3}} & {{z}^{3}} \\
\end{matrix} \right|$
We also know that we can perform any row or column operation, without changing the value of determinant.
So, let us perform the column operation${{C}_{2}}\to {{C}_{2}}-{{C}_{3}}$. We now get,
\[D=\left| \begin{matrix}
1 & 0 & 1 \\
{{x}^{2}} & {{y}^{2}}-{{z}^{2}} & {{z}^{2}} \\
{{x}^{3}} & {{y}^{3}}-{{z}^{3}} & {{z}^{3}} \\
\end{matrix} \right|\]
Now, let us perform another column operation ${{C}_{3}}\to {{C}_{3}}-{{C}_{1}}$. Thus, we will get
\[D=\left| \begin{matrix}
1 & 0 & 0 \\
{{x}^{2}} & {{y}^{2}}-{{z}^{2}} & {{z}^{2}}-{{x}^{2}} \\
{{x}^{3}} & {{y}^{3}}-{{z}^{3}} & {{z}^{3}}-{{x}^{3}} \\
\end{matrix} \right|\]
We know the expansion formula ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$. Thus, we can easily write
\[{{y}^{2}}-{{z}^{2}}=\left( y+z \right)\left( y-z \right)\] and \[{{z}^{2}}-{{x}^{2}}=\left( z+x \right)\left( z-x \right)\].
We are also well aware about the expansion formula ${{a}^{3}}-{{b}^{3}}=\left( a-b \right)\left( {{a}^{2}}+{{b}^{2}}+ab \right)$.
Hence, we can write \[{{y}^{3}}-{{z}^{3}}=\left( y-z \right)\left( {{y}^{2}}+{{z}^{2}}+yz \right)\] and \[{{z}^{3}}-{{x}^{3}}=\left( z-x \right)\left( {{z}^{2}}+{{x}^{2}}+xz \right)\].
We can now substitute the value of all these expansions into the determinant. Thus, we get
\[D=\left| \begin{matrix}
1 & 0 & 0 \\
{{x}^{2}} & \left( y+z \right)\left( y-z \right) & \left( z+x \right)\left( z-x \right) \\
{{x}^{3}} & \left( y-z \right)\left( {{y}^{2}}+{{z}^{2}}+yz \right) & \left( z-x \right)\left( {{z}^{2}}+{{x}^{2}}+xz \right) \\
\end{matrix} \right|\]
We know that we can factor out the common terms from all the elements of a row or all the elements of a column.
We can see that the term $\left( y-z \right)$ can be taken as common from column 2. So, we get
\[D=\left( y-z \right)\left| \begin{matrix}
1 & 0 & 0 \\
{{x}^{2}} & \left( y+z \right) & \left( z+x \right)\left( z-x \right) \\
{{x}^{3}} & \left( {{y}^{2}}+{{z}^{2}}+yz \right) & \left( z-x \right)\left( {{z}^{2}}+{{x}^{2}}+xz \right) \\
\end{matrix} \right|\]
Also, we can see that the term $\left( z-x \right)$ can be taken as common from column 3. Hence, we get
\[D=\left( y-z \right)\left( z-x \right)\left| \begin{matrix}
1 & 0 & 0 \\
{{x}^{2}} & \left( y+z \right) & \left( z+x \right) \\
{{x}^{3}} & \left( {{y}^{2}}+{{z}^{2}}+yz \right) & \left( {{z}^{2}}+{{x}^{2}}+xz \right) \\
\end{matrix} \right|\]
Let us now solve the determinant. We can write
$D=\left( y-z \right)\left( z-x \right)\left[ 1\left\{ \left( y+z \right)\left( {{z}^{2}}+{{x}^{2}}+xz \right)-\left( z+x \right)\left( {{y}^{2}}+{{z}^{2}}+yz \right) \right\}-0+0 \right]$
Thus, we get
$D=\left( y-z \right)\left( z-x \right)\left[ \left( y+z \right)\left( {{z}^{2}}+{{x}^{2}}+xz \right)-\left( z+x \right)\left( {{y}^{2}}+{{z}^{2}}+yz \right) \right]$
We can multiply the expressions to get
$D=\left( y-z \right)\left( z-x \right)\left[ y{{z}^{2}}+{{x}^{2}}y+xyz+{{z}^{3}}+{{x}^{2}}z+x{{z}^{2}}-{{y}^{2}}z-{{z}^{3}}-y{{z}^{2}}-x{{y}^{2}}-x{{z}^{2}}-xyz \right]$
On simplification and cancelling the terms, we get
$D=\left( y-z \right)\left( z-x \right)\left[ {{x}^{2}}y+{{x}^{2}}z-{{y}^{2}}z-x{{y}^{2}} \right]$
We can rearrange these terms as follows,
$D=\left( y-z \right)\left( z-x \right)\left[ {{x}^{2}}y-x{{y}^{2}}+{{x}^{2}}z-{{y}^{2}}z \right]$
Thus, we can write
$D=\left( y-z \right)\left( z-x \right)\left[ xy\left( x-y \right)+z\left( {{x}^{2}}-{{y}^{2}} \right) \right]$
Again, using the expansion formula, we get
$D=\left( y-z \right)\left( z-x \right)\left[ xy\left( x-y \right)+z\left( x+y \right)\left( x-y \right) \right]$
Hence, we get
$D=\left( x-y \right)\left( y-z \right)\left( z-x \right)\left[ xy+z\left( x+y \right) \right]$
Or, we can write this as
$D=\left( x-y \right)\left( y-z \right)\left( z-x \right)\left( xy+yz+zx \right)$
Hence, we have proved that $\left| \begin{matrix}
1 & 1 & 1 \\
{{x}^{2}} & {{y}^{2}} & {{z}^{2}} \\
{{x}^{3}} & {{y}^{3}} & {{z}^{3}} \\
\end{matrix} \right|=\left( x-y \right)\left( y-z \right)\left( z-x \right)\left( xy+yz+zx \right)$.
Note: We must note the difference in the symbols of determinant and matrix. We also know that when we take something as common from a matrix, is taken from each and every element of that matrix. But, in case of determinant, the common is taken only from a row or column.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

