
Show that \[\left( {{m^2} - 1} \right),\left( {2m} \right),\left( {{m^2} + 1} \right)\] always form a Pythagorean triplet.
Answer
621.3k+ views
Hint: When the length of the side of a right triangle satisfies the Pythagoras theorem, these three numbers are known as Pythagorean triplets or triples. According to Pythagoras theorem, ${a^2} + {b^2} = {c^2}$.
Complete step-by-step answer:
Let $x = {m^2} - 1$ ,$y = 2m$ , and $z = {m^2} + 1$
To show x, y and z are Pythagorean triplet .So, we have to prove ${x^2} + {y^2} = {z^2}$ .
Now, $LHS = {x^2} + {y^2}$
Put the value of x and y in LHS
$ \Rightarrow {x^2} + {y^2} = {\left( {{m^2} - 1} \right)^2} + {\left( {2m} \right)^2}$
Use identity, ${\left( {p - q} \right)^2} = {\left( p \right)^2} - 2pq + {\left( q \right)^2}$
$
\Rightarrow {x^2} + {y^2} = {\left( {{m^2}} \right)^2} - 2\left( {{m^2}} \right)\left( 1 \right) + {\left( 1 \right)^2} + 4{m^2} \\
\Rightarrow {x^2} + {y^2} = {m^4} - 2{m^2} + 1 + 4{m^2} \\
\Rightarrow {x^2} + {y^2} = {m^4} + 2{m^2} + 1 \\
$
Use identity, ${\left( p \right)^2} + 2pq + {\left( q \right)^2} = {\left( {p + q} \right)^2}$
$
\Rightarrow {x^2} + {y^2} = {\left( {{m^2}} \right)^2} + 2\left( {{m^2}} \right)\left( 1 \right) + {\left( 1 \right)^2} \\
\Rightarrow {x^2} + {y^2} = {\left( {{m^2} + 1} \right)^2} \\
LHS = {\left( {{m^2} + 1} \right)^2}............\left( 1 \right) \\
$
Now, $RHS = {z^2}$
Put value of z in RHS
$
\Rightarrow {z^2} = {\left( {m{}^2 + 1} \right)^2} \\
RHS = {\left( {m{}^2 + 1} \right)^2}.........\left( 2 \right) \\
$
From (1) and (2) equation, LHS=RHS
Now, it's proven ${x^2} + {y^2} = {z^2}$ .
So, we can say \[\left( {{m^2} - 1} \right),\left( {2m} \right),\left( {{m^2} + 1} \right)\] always form a Pythagorean triplet.
Note: Whenever we face such types of problems we use some important points. First we assume triplets are sides of the right triangle and apply Pythagoras theorem then after using some algebraic identities if Pythagoras theorem satisfies. So, we can assume triplets are Pythagorean triplet.
Complete step-by-step answer:
Let $x = {m^2} - 1$ ,$y = 2m$ , and $z = {m^2} + 1$
To show x, y and z are Pythagorean triplet .So, we have to prove ${x^2} + {y^2} = {z^2}$ .
Now, $LHS = {x^2} + {y^2}$
Put the value of x and y in LHS
$ \Rightarrow {x^2} + {y^2} = {\left( {{m^2} - 1} \right)^2} + {\left( {2m} \right)^2}$
Use identity, ${\left( {p - q} \right)^2} = {\left( p \right)^2} - 2pq + {\left( q \right)^2}$
$
\Rightarrow {x^2} + {y^2} = {\left( {{m^2}} \right)^2} - 2\left( {{m^2}} \right)\left( 1 \right) + {\left( 1 \right)^2} + 4{m^2} \\
\Rightarrow {x^2} + {y^2} = {m^4} - 2{m^2} + 1 + 4{m^2} \\
\Rightarrow {x^2} + {y^2} = {m^4} + 2{m^2} + 1 \\
$
Use identity, ${\left( p \right)^2} + 2pq + {\left( q \right)^2} = {\left( {p + q} \right)^2}$
$
\Rightarrow {x^2} + {y^2} = {\left( {{m^2}} \right)^2} + 2\left( {{m^2}} \right)\left( 1 \right) + {\left( 1 \right)^2} \\
\Rightarrow {x^2} + {y^2} = {\left( {{m^2} + 1} \right)^2} \\
LHS = {\left( {{m^2} + 1} \right)^2}............\left( 1 \right) \\
$
Now, $RHS = {z^2}$
Put value of z in RHS
$
\Rightarrow {z^2} = {\left( {m{}^2 + 1} \right)^2} \\
RHS = {\left( {m{}^2 + 1} \right)^2}.........\left( 2 \right) \\
$
From (1) and (2) equation, LHS=RHS
Now, it's proven ${x^2} + {y^2} = {z^2}$ .
So, we can say \[\left( {{m^2} - 1} \right),\left( {2m} \right),\left( {{m^2} + 1} \right)\] always form a Pythagorean triplet.
Note: Whenever we face such types of problems we use some important points. First we assume triplets are sides of the right triangle and apply Pythagoras theorem then after using some algebraic identities if Pythagoras theorem satisfies. So, we can assume triplets are Pythagorean triplet.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

