Answer
Verified
496.8k+ views
Hint: The given question is related to logarithms and its properties. Try to recall the properties of logarithms which are related to logarithm of product and division of two numbers and logarithms of numbers with exponents.
Complete step by step solution:
Before solving the problem , we must know about the properties of logarithms. The following properties will be used in solving the question :
$\log (a\times b)=\log (a)+\log (b)$
$\log \left( \dfrac{a}{b} \right)=\log (a)-\log (b)$
$\log {{(a)}^{b}}=b\times \log (a)$
Let’s consider the LHS. We know that $\sqrt[n]{a}$ can be written as ${{a}^{\dfrac{1}{n}}}$ , or we can say $\sqrt[n]{a}={{a}^{\dfrac{1}{n}}}$.
So , we can write $\sqrt[4]{5}$ as ${{5}^{\dfrac{1}{4}}}$ , $\sqrt[10]{2}$ as ${{2}^{\dfrac{1}{10}}}$, $\sqrt[3]{18}$ as ${{18}^{\dfrac{1}{3}}}$ and $\sqrt{2}$ as ${{2}^{\dfrac{1}{2}}}$ .
Now , we need to find the value of $\log \dfrac{\sqrt[4]{5}.\sqrt[10]{2}}{\sqrt[3]{18\sqrt{2}}}$.
We know , $\sqrt[4]{5}={{5}^{\dfrac{1}{4}}}$ , $\sqrt[10]{2}={{2}^{\dfrac{1}{10}}}$, $\sqrt[3]{18}={{18}^{\dfrac{1}{3}}}$ and $\sqrt{2}={{2}^{\dfrac{1}{2}}}$ . So , $\log \dfrac{\sqrt[4]{5}.\sqrt[10]{2}}{\sqrt[3]{18\sqrt{2}}}=\log \left( \left( {{5}^{\dfrac{1}{4}}}\times {{2}^{\dfrac{1}{10}}} \right)\div {{\left( 18\times {{2}^{\dfrac{1}{2}}} \right)}^{\dfrac{1}{3}}} \right)=\log \left( \left( {{5}^{\dfrac{1}{4}}}\times {{2}^{\dfrac{1}{10}}} \right)\div \left( \left( {{18}^{\dfrac{1}{3}}} \right)\times {{\left( {{2}^{\dfrac{1}{2}}} \right)}^{\dfrac{1}{3}}} \right) \right)$
Now , we know $\log (a\times b)=\log (a)+\log (b)$ and $\log \left( \dfrac{a}{b} \right)=\log (a)-\log (b)$ and ${{\left( {{a}^{m}} \right)}^{n}}={{a}^{mn}}$
So, $\log \left( \left( {{5}^{\dfrac{1}{4}}}\times {{2}^{\dfrac{1}{10}}} \right)\div \left( \left( {{18}^{\dfrac{1}{3}}} \right)\times {{\left( {{2}^{\dfrac{1}{2}}} \right)}^{\dfrac{1}{3}}} \right) \right)=\left( \log \left( {{5}^{\dfrac{1}{4}}} \right)+\log \left( {{2}^{\dfrac{1}{10}}} \right) \right)-\left( \log \left( {{18}^{\dfrac{1}{3}}} \right)+\log \left( {{2}^{\dfrac{1}{6}}} \right) \right)$ .
Now , we know $\log {{(a)}^{b}}=b\times \log (a)$.
So , $\left( \log \left( {{5}^{\dfrac{1}{4}}} \right)+\log \left( {{2}^{\dfrac{1}{10}}} \right) \right)-\left( \log \left( {{18}^{\dfrac{1}{3}}} \right)+\log \left( {{2}^{\dfrac{1}{6}}} \right) \right)=\dfrac{1}{4}\log \left( 5 \right)+\dfrac{1}{10}\log \left( 2 \right)-\dfrac{1}{3}\log \left( 18 \right)-\dfrac{1}{6}\log \left( 2 \right)$
We know we can write $18$ as $2\times 3\times 3$ .
So , $\dfrac{1}{4}\log \left( 5 \right)+\dfrac{1}{10}\log \left( 2 \right)-\dfrac{1}{3}\log \left( 18 \right)-\dfrac{1}{6}\log \left( 2 \right)=\dfrac{1}{4}\log \left( 5 \right)+\dfrac{1}{10}\log \left( 2 \right)-\dfrac{1}{3}\log \left( 2\times 3\times 3 \right)-\dfrac{1}{6}\log \left( 2 \right)$
Now , we know $\log (a\times b)=\log (a)+\log (b)$.
So , we can write $\log \left( 2\times 3\times 3 \right)$ as $\log 2+\log 3+\log 3=\log 2+2\log 3$.
Now , after calculating all these values , we can write $\dfrac{1}{4}\log \left( 5 \right)+\dfrac{1}{10}\log \left( 2 \right)-\dfrac{1}{3}\log \left( 18 \right)-\dfrac{1}{6}\log \left( 2 \right)$ as $\dfrac{1}{4}\log \left( 5 \right)+\dfrac{1}{10}\log \left( 2 \right)-\dfrac{1}{3}\left( \log 2+2\log 3 \right)-\dfrac{1}{6}\log \left( 2 \right)$
Now , we will open the brackets . On opening the brackets , we get
$\log \dfrac{\sqrt[4]{5}.\sqrt[10]{2}}{\sqrt[3]{18\sqrt{2}}}=\dfrac{1}{4}\log \left( 5 \right)+\dfrac{1}{10}\log \left( 2 \right)-\dfrac{1}{3}\log \left( 2 \right)-\dfrac{2}{3}\log \left( 3 \right)-\dfrac{1}{6}\log \left( 2 \right)$
Now , we will write all the terms with $\log 2$together .
So , we get $\log \dfrac{\sqrt[4]{5}.\sqrt[10]{2}}{\sqrt[3]{18\sqrt{2}}}=\dfrac{1}{4}\log \left( 5 \right)+\dfrac{1}{10}\log \left( 2 \right)-\dfrac{1}{3}\log \left( 2 \right)-\dfrac{1}{6}\log \left( 2 \right)-\dfrac{2}{3}\log \left( 3 \right)$.
Now , we will take $\log 2$ common.
So , we get $\log \dfrac{\sqrt[4]{5}.\sqrt[10]{2}}{\sqrt[3]{18\sqrt{2}}}=\dfrac{1}{4}\log \left( 5 \right)+\log 2\left( \dfrac{1}{10}-\dfrac{1}{3}-\dfrac{1}{6} \right)-\dfrac{2}{3}\log 3$
Now , we will take the LCM of the denominators and solve the fractions in the brackets.
To find the LCM , we will factorize the denominators.
\[\begin{align}
& 3=3\times 1 \\
& 6=3\times 2\times 1 \\
& 10=2\times 5\times 1 \\
\end{align}\]
So , the LCM of the denominators is $2\times 3\times 5=30$.
So , $\left( \dfrac{1}{10}-\dfrac{1}{3}-\dfrac{1}{6} \right)=\dfrac{3-10-5}{30}=-\dfrac{12}{30}=-\dfrac{2}{5}$ .
So , we can write $\log \dfrac{\sqrt[4]{5}.\sqrt[10]{2}}{\sqrt[3]{18\sqrt{2}}}$ as $\dfrac{1}{4}\log \left( 5 \right)-\dfrac{2}{5}\log 2-\dfrac{2}{3}\log 3$ .
Hence , the value of $\log \dfrac{\sqrt[4]{5}.\sqrt[10]{2}}{\sqrt[3]{18\sqrt{2}}}$ is $\dfrac{1}{4}\log \left( 5 \right)-\dfrac{2}{5}\log 2-\dfrac{2}{3}\log 3$.
Hence, proved.
Note: Students generally get confused between $\log \left( \dfrac{a}{b} \right)$ and $\dfrac{\log a}{\log b}$ . Both are not the same. $\log \left( \dfrac{a}{b} \right)=\log (a)-\log (b)$ which is not equal to $\dfrac{\log a}{\log b}$. Such confusion should be avoided and the formulas should be remembered. They are helpful in solving various problems related to logarithms.
Complete step by step solution:
Before solving the problem , we must know about the properties of logarithms. The following properties will be used in solving the question :
$\log (a\times b)=\log (a)+\log (b)$
$\log \left( \dfrac{a}{b} \right)=\log (a)-\log (b)$
$\log {{(a)}^{b}}=b\times \log (a)$
Let’s consider the LHS. We know that $\sqrt[n]{a}$ can be written as ${{a}^{\dfrac{1}{n}}}$ , or we can say $\sqrt[n]{a}={{a}^{\dfrac{1}{n}}}$.
So , we can write $\sqrt[4]{5}$ as ${{5}^{\dfrac{1}{4}}}$ , $\sqrt[10]{2}$ as ${{2}^{\dfrac{1}{10}}}$, $\sqrt[3]{18}$ as ${{18}^{\dfrac{1}{3}}}$ and $\sqrt{2}$ as ${{2}^{\dfrac{1}{2}}}$ .
Now , we need to find the value of $\log \dfrac{\sqrt[4]{5}.\sqrt[10]{2}}{\sqrt[3]{18\sqrt{2}}}$.
We know , $\sqrt[4]{5}={{5}^{\dfrac{1}{4}}}$ , $\sqrt[10]{2}={{2}^{\dfrac{1}{10}}}$, $\sqrt[3]{18}={{18}^{\dfrac{1}{3}}}$ and $\sqrt{2}={{2}^{\dfrac{1}{2}}}$ . So , $\log \dfrac{\sqrt[4]{5}.\sqrt[10]{2}}{\sqrt[3]{18\sqrt{2}}}=\log \left( \left( {{5}^{\dfrac{1}{4}}}\times {{2}^{\dfrac{1}{10}}} \right)\div {{\left( 18\times {{2}^{\dfrac{1}{2}}} \right)}^{\dfrac{1}{3}}} \right)=\log \left( \left( {{5}^{\dfrac{1}{4}}}\times {{2}^{\dfrac{1}{10}}} \right)\div \left( \left( {{18}^{\dfrac{1}{3}}} \right)\times {{\left( {{2}^{\dfrac{1}{2}}} \right)}^{\dfrac{1}{3}}} \right) \right)$
Now , we know $\log (a\times b)=\log (a)+\log (b)$ and $\log \left( \dfrac{a}{b} \right)=\log (a)-\log (b)$ and ${{\left( {{a}^{m}} \right)}^{n}}={{a}^{mn}}$
So, $\log \left( \left( {{5}^{\dfrac{1}{4}}}\times {{2}^{\dfrac{1}{10}}} \right)\div \left( \left( {{18}^{\dfrac{1}{3}}} \right)\times {{\left( {{2}^{\dfrac{1}{2}}} \right)}^{\dfrac{1}{3}}} \right) \right)=\left( \log \left( {{5}^{\dfrac{1}{4}}} \right)+\log \left( {{2}^{\dfrac{1}{10}}} \right) \right)-\left( \log \left( {{18}^{\dfrac{1}{3}}} \right)+\log \left( {{2}^{\dfrac{1}{6}}} \right) \right)$ .
Now , we know $\log {{(a)}^{b}}=b\times \log (a)$.
So , $\left( \log \left( {{5}^{\dfrac{1}{4}}} \right)+\log \left( {{2}^{\dfrac{1}{10}}} \right) \right)-\left( \log \left( {{18}^{\dfrac{1}{3}}} \right)+\log \left( {{2}^{\dfrac{1}{6}}} \right) \right)=\dfrac{1}{4}\log \left( 5 \right)+\dfrac{1}{10}\log \left( 2 \right)-\dfrac{1}{3}\log \left( 18 \right)-\dfrac{1}{6}\log \left( 2 \right)$
We know we can write $18$ as $2\times 3\times 3$ .
So , $\dfrac{1}{4}\log \left( 5 \right)+\dfrac{1}{10}\log \left( 2 \right)-\dfrac{1}{3}\log \left( 18 \right)-\dfrac{1}{6}\log \left( 2 \right)=\dfrac{1}{4}\log \left( 5 \right)+\dfrac{1}{10}\log \left( 2 \right)-\dfrac{1}{3}\log \left( 2\times 3\times 3 \right)-\dfrac{1}{6}\log \left( 2 \right)$
Now , we know $\log (a\times b)=\log (a)+\log (b)$.
So , we can write $\log \left( 2\times 3\times 3 \right)$ as $\log 2+\log 3+\log 3=\log 2+2\log 3$.
Now , after calculating all these values , we can write $\dfrac{1}{4}\log \left( 5 \right)+\dfrac{1}{10}\log \left( 2 \right)-\dfrac{1}{3}\log \left( 18 \right)-\dfrac{1}{6}\log \left( 2 \right)$ as $\dfrac{1}{4}\log \left( 5 \right)+\dfrac{1}{10}\log \left( 2 \right)-\dfrac{1}{3}\left( \log 2+2\log 3 \right)-\dfrac{1}{6}\log \left( 2 \right)$
Now , we will open the brackets . On opening the brackets , we get
$\log \dfrac{\sqrt[4]{5}.\sqrt[10]{2}}{\sqrt[3]{18\sqrt{2}}}=\dfrac{1}{4}\log \left( 5 \right)+\dfrac{1}{10}\log \left( 2 \right)-\dfrac{1}{3}\log \left( 2 \right)-\dfrac{2}{3}\log \left( 3 \right)-\dfrac{1}{6}\log \left( 2 \right)$
Now , we will write all the terms with $\log 2$together .
So , we get $\log \dfrac{\sqrt[4]{5}.\sqrt[10]{2}}{\sqrt[3]{18\sqrt{2}}}=\dfrac{1}{4}\log \left( 5 \right)+\dfrac{1}{10}\log \left( 2 \right)-\dfrac{1}{3}\log \left( 2 \right)-\dfrac{1}{6}\log \left( 2 \right)-\dfrac{2}{3}\log \left( 3 \right)$.
Now , we will take $\log 2$ common.
So , we get $\log \dfrac{\sqrt[4]{5}.\sqrt[10]{2}}{\sqrt[3]{18\sqrt{2}}}=\dfrac{1}{4}\log \left( 5 \right)+\log 2\left( \dfrac{1}{10}-\dfrac{1}{3}-\dfrac{1}{6} \right)-\dfrac{2}{3}\log 3$
Now , we will take the LCM of the denominators and solve the fractions in the brackets.
To find the LCM , we will factorize the denominators.
\[\begin{align}
& 3=3\times 1 \\
& 6=3\times 2\times 1 \\
& 10=2\times 5\times 1 \\
\end{align}\]
So , the LCM of the denominators is $2\times 3\times 5=30$.
So , $\left( \dfrac{1}{10}-\dfrac{1}{3}-\dfrac{1}{6} \right)=\dfrac{3-10-5}{30}=-\dfrac{12}{30}=-\dfrac{2}{5}$ .
So , we can write $\log \dfrac{\sqrt[4]{5}.\sqrt[10]{2}}{\sqrt[3]{18\sqrt{2}}}$ as $\dfrac{1}{4}\log \left( 5 \right)-\dfrac{2}{5}\log 2-\dfrac{2}{3}\log 3$ .
Hence , the value of $\log \dfrac{\sqrt[4]{5}.\sqrt[10]{2}}{\sqrt[3]{18\sqrt{2}}}$ is $\dfrac{1}{4}\log \left( 5 \right)-\dfrac{2}{5}\log 2-\dfrac{2}{3}\log 3$.
Hence, proved.
Note: Students generally get confused between $\log \left( \dfrac{a}{b} \right)$ and $\dfrac{\log a}{\log b}$ . Both are not the same. $\log \left( \dfrac{a}{b} \right)=\log (a)-\log (b)$ which is not equal to $\dfrac{\log a}{\log b}$. Such confusion should be avoided and the formulas should be remembered. They are helpful in solving various problems related to logarithms.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE