Answer
Verified
404.6k+ views
Hint To prove that nuclear mass density is independent of the mass number $A$we will start with the understanding of what does nuclear mass density means. Nuclear mass density is the ratio of nuclear mass to nuclear volume and by using the formula of nuclear density we will compare it with mass number A.
Formula used
$ \Rightarrow R \propto {A^{\dfrac{1}{3}}}$
$ \Rightarrow \rho = \dfrac{A}{V}$
$ \Rightarrow Volume(V) = \dfrac{4}{3}\pi {R^3}$
Complete step by step answer:
We will start with the relation of the nuclear radius with the mass number which shows that the nuclear radius is directly proportional to the cube root of the mass number.
$ \Rightarrow R \propto {A^{\dfrac{1}{3}}}$
Now to remove the proportionality between the nuclear radius and mass number we will introduce a constant of proportionality.
$ \Rightarrow R = {R_0}{A^{\dfrac{1}{3}}}$ -------- Equation (1)
Where ${R_0}$is constant of proportionality, $R$is the radius of the nucleus and $A$is the mass number.
Now the nuclear mass density of the nucleus can be given by the ratio of nuclear mass and its nuclear volume. Given as
$ \Rightarrow Density(\rho ) = \dfrac{{mass}}{{volume}}$
$ \Rightarrow \rho = \dfrac{A}{V}$ --------- Equation (2)
For nucleus mass = $A$and Volume of the nucleus will be given by the formula of volume of a sphere, hence
$ \Rightarrow Volume(V) = \dfrac{4}{3}\pi {r^3}$ (For sphere)
$ \Rightarrow Volume(V) = \dfrac{4}{3}\pi {R^3}$ (For nucleus)
Now substituting the values of $mass(A)$ and $volume(V)$of the nucleus in equation (2), we get
$ \Rightarrow {\rho _{nucleus}} = \dfrac{A}{{\dfrac{4}{3}\pi {R^3}}}$ -------- Equation (3)
Now from Equation (1) and Equation (3), we get
$ \Rightarrow {\rho _{nucleus}} = \dfrac{A}{{\dfrac{4}{3}\pi {R_0}^3A}}$
$\therefore {\rho _{nucleus}} = \dfrac{3}{{4\pi {R_0}^3}}$
This shows that ${\rho _{nucleus}}$nuclear mass density is nearly constant so it is independent of mass number$A$.
Note We can further deduce the value of nuclear mass density as we know that ${R_0}$ is constant so by substituting the values of $\pi = 3.14$and the value ${R_0} = 1.25fm$ hence we can obtain the value of nuclear charge density as $2.3 \times {10^{17}}\dfrac{{kg}}{{{m^3}}}$, as an average.
Formula used
$ \Rightarrow R \propto {A^{\dfrac{1}{3}}}$
$ \Rightarrow \rho = \dfrac{A}{V}$
$ \Rightarrow Volume(V) = \dfrac{4}{3}\pi {R^3}$
Complete step by step answer:
We will start with the relation of the nuclear radius with the mass number which shows that the nuclear radius is directly proportional to the cube root of the mass number.
$ \Rightarrow R \propto {A^{\dfrac{1}{3}}}$
Now to remove the proportionality between the nuclear radius and mass number we will introduce a constant of proportionality.
$ \Rightarrow R = {R_0}{A^{\dfrac{1}{3}}}$ -------- Equation (1)
Where ${R_0}$is constant of proportionality, $R$is the radius of the nucleus and $A$is the mass number.
Now the nuclear mass density of the nucleus can be given by the ratio of nuclear mass and its nuclear volume. Given as
$ \Rightarrow Density(\rho ) = \dfrac{{mass}}{{volume}}$
$ \Rightarrow \rho = \dfrac{A}{V}$ --------- Equation (2)
For nucleus mass = $A$and Volume of the nucleus will be given by the formula of volume of a sphere, hence
$ \Rightarrow Volume(V) = \dfrac{4}{3}\pi {r^3}$ (For sphere)
$ \Rightarrow Volume(V) = \dfrac{4}{3}\pi {R^3}$ (For nucleus)
Now substituting the values of $mass(A)$ and $volume(V)$of the nucleus in equation (2), we get
$ \Rightarrow {\rho _{nucleus}} = \dfrac{A}{{\dfrac{4}{3}\pi {R^3}}}$ -------- Equation (3)
Now from Equation (1) and Equation (3), we get
$ \Rightarrow {\rho _{nucleus}} = \dfrac{A}{{\dfrac{4}{3}\pi {R_0}^3A}}$
$\therefore {\rho _{nucleus}} = \dfrac{3}{{4\pi {R_0}^3}}$
This shows that ${\rho _{nucleus}}$nuclear mass density is nearly constant so it is independent of mass number$A$.
Note We can further deduce the value of nuclear mass density as we know that ${R_0}$ is constant so by substituting the values of $\pi = 3.14$and the value ${R_0} = 1.25fm$ hence we can obtain the value of nuclear charge density as $2.3 \times {10^{17}}\dfrac{{kg}}{{{m^3}}}$, as an average.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE