Answer
Verified
503.7k+ views
Hint – For solving such a question, use a simple formula of roots of quadratic equation.
Given equation:
$16{x^4} - 20{x^2} + 5 = 0$
Since the power of $x$ is$4\& 2$
So, let${x^2} = t$ in the above equation.
Then the equation becomes:
$16{t^2} - 20t + 5 = 0$
As we know the formula for roots of quadratic equation is:
$\left[ {x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}} \right]$ for any general quadratic equation of the form $a{x^2} + bx + c = 0$
Hence roots of the given quadratic equation are:
$
t = \dfrac{{ - \left( { - 20} \right) \pm \sqrt {{{\left( { - 20} \right)}^2} - \left( {4 \times 16 \times 5} \right)} }}{{2 \times 16}} \\
t = \dfrac{{20 \pm \sqrt {400 - 320} }}{{32}} \\
t = \dfrac{{20 \pm \sqrt {80} }}{{32}} \\
t = \dfrac{{4\left( {5 \pm \sqrt 5 } \right)}}{{32}} \\
t = \dfrac{{\left( {5 \pm \sqrt 5 } \right)}}{8} \\
$
Substituting the value of $x$ in place of $t$ we get:
$
{x^2} = \dfrac{{\left( {5 \pm \sqrt 5 } \right)}}{8} \\
x = \sqrt {\dfrac{{\left( {5 \pm \sqrt 5 } \right)}}{8}} \\
$
Multiplying and dividing numbers inside the root by $2$.
$
x = \sqrt {\dfrac{{2\left( {5 \pm \sqrt 5 } \right)}}{{16}}} \\
x = \dfrac{{\sqrt {10 \pm 2\sqrt 5 } }}{4} \\
$
As we know that
$\sin {36^0} = \dfrac{{\sqrt {10 - 2\sqrt 5 } }}{4}$
Hence, $\sin {36^0}$ is a root of a given quadratic equation.
Note- Whenever you find such type of problems, you can convert your \[4th\] order equation into quadratic equation by assuming some variable as done in the case above, after that with the help of quadratic formula easily evaluate the unknown variable. Formulas of roots of the quadratic equation mentioned above must be remembered in order to solve the quadratic equation easily.
Given equation:
$16{x^4} - 20{x^2} + 5 = 0$
Since the power of $x$ is$4\& 2$
So, let${x^2} = t$ in the above equation.
Then the equation becomes:
$16{t^2} - 20t + 5 = 0$
As we know the formula for roots of quadratic equation is:
$\left[ {x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}} \right]$ for any general quadratic equation of the form $a{x^2} + bx + c = 0$
Hence roots of the given quadratic equation are:
$
t = \dfrac{{ - \left( { - 20} \right) \pm \sqrt {{{\left( { - 20} \right)}^2} - \left( {4 \times 16 \times 5} \right)} }}{{2 \times 16}} \\
t = \dfrac{{20 \pm \sqrt {400 - 320} }}{{32}} \\
t = \dfrac{{20 \pm \sqrt {80} }}{{32}} \\
t = \dfrac{{4\left( {5 \pm \sqrt 5 } \right)}}{{32}} \\
t = \dfrac{{\left( {5 \pm \sqrt 5 } \right)}}{8} \\
$
Substituting the value of $x$ in place of $t$ we get:
$
{x^2} = \dfrac{{\left( {5 \pm \sqrt 5 } \right)}}{8} \\
x = \sqrt {\dfrac{{\left( {5 \pm \sqrt 5 } \right)}}{8}} \\
$
Multiplying and dividing numbers inside the root by $2$.
$
x = \sqrt {\dfrac{{2\left( {5 \pm \sqrt 5 } \right)}}{{16}}} \\
x = \dfrac{{\sqrt {10 \pm 2\sqrt 5 } }}{4} \\
$
As we know that
$\sin {36^0} = \dfrac{{\sqrt {10 - 2\sqrt 5 } }}{4}$
Hence, $\sin {36^0}$ is a root of a given quadratic equation.
Note- Whenever you find such type of problems, you can convert your \[4th\] order equation into quadratic equation by assuming some variable as done in the case above, after that with the help of quadratic formula easily evaluate the unknown variable. Formulas of roots of the quadratic equation mentioned above must be remembered in order to solve the quadratic equation easily.
Recently Updated Pages
According to Mendeleevs Periodic Law the elements were class 10 chemistry CBSE
Arrange the following elements in the order of their class 10 chemistry CBSE
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Trending doubts
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
The term ISWM refers to A Integrated Solid Waste Machine class 10 social science CBSE
Name five important trees found in the tropical evergreen class 10 social studies CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Chahalgani means ATurkish noble under Iltutmish BSlaves class 10 social science CBSE