Answer
Verified
497.4k+ views
Hint: First see the equation of line passing through the points or see the direction ratio of the lines of two lines through the points given above and then use the condition of two perpendicular lines. Use the concept of dot and cross product.
Complete step-by-step answer:
First let's name the points given, A= (1, -1, 2) and B = (3, 4, -2), C = (0, 3, 2) and D = (3, 5, 6)
Two lines with direction ratio \[{a_1},{b_1},{c_1}\] and \[{a_2},{b_2},{c_2}\] are said to be perpendicular to each other if
\[{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2} = 0\]………(1)
Direction ratio of the line passing through the points is given by \[({x_2} - {x_1}),({y_{_2}} - {y_1}),({z_2} - {z_1})\]
∴ Direction ratio of the line passing through the points A and B is
\[(3 - 1),(4 - ( - 1)),( - 2 - 2)\]
\[ \Rightarrow \]2, 5, -4
∴\[{a_1}\] = 2, \[{b_1}\] = 5, \[{c_1}\]=-4
Direction ratio of the line passing through the points C and D is
\[(3 - 0),(5 - 3),(6 - 2)\]
\[ \Rightarrow \]3, 2, 4
\[ \Rightarrow \]\[{a_2}\] = 3, \[{b_2}\] = 2, \[{c_2}\] = 4
Now using equation (1) we get
= (2×3) + (5×2) + (-4×-4)
=6 + 10 + (-16)
=16 – 16
= 0.
Since the equation (1) is satisfied which shows that the two lines passing through the above points are perpendicular to each other.
Note: This question can also be solved using the dot product, for which you first have to make these points into vector equations of two lines and then the dot product of the two lines which should be equal to 0 to show that they are perpendicular.
Complete step-by-step answer:
First let's name the points given, A= (1, -1, 2) and B = (3, 4, -2), C = (0, 3, 2) and D = (3, 5, 6)
Two lines with direction ratio \[{a_1},{b_1},{c_1}\] and \[{a_2},{b_2},{c_2}\] are said to be perpendicular to each other if
\[{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2} = 0\]………(1)
Direction ratio of the line passing through the points is given by \[({x_2} - {x_1}),({y_{_2}} - {y_1}),({z_2} - {z_1})\]
∴ Direction ratio of the line passing through the points A and B is
\[(3 - 1),(4 - ( - 1)),( - 2 - 2)\]
\[ \Rightarrow \]2, 5, -4
∴\[{a_1}\] = 2, \[{b_1}\] = 5, \[{c_1}\]=-4
Direction ratio of the line passing through the points C and D is
\[(3 - 0),(5 - 3),(6 - 2)\]
\[ \Rightarrow \]3, 2, 4
\[ \Rightarrow \]\[{a_2}\] = 3, \[{b_2}\] = 2, \[{c_2}\] = 4
Now using equation (1) we get
= (2×3) + (5×2) + (-4×-4)
=6 + 10 + (-16)
=16 – 16
= 0.
Since the equation (1) is satisfied which shows that the two lines passing through the above points are perpendicular to each other.
Note: This question can also be solved using the dot product, for which you first have to make these points into vector equations of two lines and then the dot product of the two lines which should be equal to 0 to show that they are perpendicular.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE