Answer
Verified
497.4k+ views
Hint: Here to show that the 3 points are collinear we have to find the vectors of the given points and calculate its magnitude. If the points are collinear it means all points lie in a straight line.
Complete step-by-step answer:
As you know in question, we have to prove three points are collinear. First of all, you have to know the condition for collinearity.
Three points A(1, 2, 7), B(2, 6, 3) and C(3, 10, -1) are collinear
If and only if \[\left| {\overrightarrow {AB} } \right| + \left| {\overrightarrow {BC} } \right| = \left| {\overrightarrow {AC} } \right|\]
First find the vectors from \[\overrightarrow {AB} ,\overrightarrow {BC} ,\overrightarrow {AC} \]
$\overrightarrow {AB} = \left( {2 - 1} \right)\widehat i + \left( {6 - 2} \right)\widehat j + \left( {3 - 7} \right)\widehat k$
$\overrightarrow {AB} = \widehat i + 4\widehat j - 4\widehat k$
$\overrightarrow {BC} = \left( {3 - 2} \right)\widehat i + \left( {10 - 6} \right)\widehat j + \left( { - 1 - 3} \right)\widehat k$
$\overrightarrow {BC} = \widehat i + 4\widehat j - 4\widehat k$
$\overrightarrow {AC} = \left( {3 - 1} \right)\widehat i + \left( {10 - 2} \right)\widehat j + \left( { - 1 - 7} \right)\widehat k$
$\overrightarrow {AC} = 2\widehat i + 8\widehat j - 8\widehat k$
Now we have to calculate magnitude of these vectors \[\overrightarrow {AB} ,\overrightarrow {BC} , \overrightarrow {AC} \]
Magnitude of $\left| {\overrightarrow {AB} } \right| = \sqrt {{1^2} + {4^2} + {{\left( { - 4} \right)}^2}} $
$\left| {\overrightarrow {AB} } \right| = \sqrt {1 + 16 + 16} = \sqrt {33} $
Magnitude of $\left| {\overrightarrow {BC} } \right| = \sqrt {{1^2} + {4^2} + {{\left( { - 4} \right)}^2}} $
$\left| {\overrightarrow {BC} } \right| = \sqrt {1 + 16 + 16} = \sqrt {33} $
Magnitude of $\left| {\overrightarrow {AC} } \right| = \sqrt {{2^2} + {8^2} + {{\left( { - 8} \right)}^2}} $
$\left| {\overrightarrow {AC} } \right| = \sqrt {4 + 64 + 64} = \sqrt {132} = \sqrt {4 \times 33} $
$\left| {\overrightarrow {AC} } \right| = 2\sqrt {33} $
Now put the magnitude of these vectors In condition of collinearity.
$\left| {\overrightarrow {AB} } \right| + \left| {\overrightarrow {BC} } \right| = \sqrt {33} + \sqrt {33} = 2\sqrt {33} $
$\left| {\overrightarrow {AC} } \right| = 2\sqrt {33} $
Now you can easily see condition of collinearity satisfy
\[\left| {\overrightarrow {AB} } \right| + \left| {\overrightarrow {BC} } \right| = \left| {\overrightarrow {AC} } \right| = 2\sqrt {33} \]
Hence proved three point A(1, 2, 7), B(2, 6, 3) and C(3, 10, -1) are collinear
Note: Whenever you come to this type of problem, always apply the condition of collinearity. If some points are collinear it means all points lie in a straight line. It’s the geometrical application of collinearity.
Complete step-by-step answer:
As you know in question, we have to prove three points are collinear. First of all, you have to know the condition for collinearity.
Three points A(1, 2, 7), B(2, 6, 3) and C(3, 10, -1) are collinear
If and only if \[\left| {\overrightarrow {AB} } \right| + \left| {\overrightarrow {BC} } \right| = \left| {\overrightarrow {AC} } \right|\]
First find the vectors from \[\overrightarrow {AB} ,\overrightarrow {BC} ,\overrightarrow {AC} \]
$\overrightarrow {AB} = \left( {2 - 1} \right)\widehat i + \left( {6 - 2} \right)\widehat j + \left( {3 - 7} \right)\widehat k$
$\overrightarrow {AB} = \widehat i + 4\widehat j - 4\widehat k$
$\overrightarrow {BC} = \left( {3 - 2} \right)\widehat i + \left( {10 - 6} \right)\widehat j + \left( { - 1 - 3} \right)\widehat k$
$\overrightarrow {BC} = \widehat i + 4\widehat j - 4\widehat k$
$\overrightarrow {AC} = \left( {3 - 1} \right)\widehat i + \left( {10 - 2} \right)\widehat j + \left( { - 1 - 7} \right)\widehat k$
$\overrightarrow {AC} = 2\widehat i + 8\widehat j - 8\widehat k$
Now we have to calculate magnitude of these vectors \[\overrightarrow {AB} ,\overrightarrow {BC} , \overrightarrow {AC} \]
Magnitude of $\left| {\overrightarrow {AB} } \right| = \sqrt {{1^2} + {4^2} + {{\left( { - 4} \right)}^2}} $
$\left| {\overrightarrow {AB} } \right| = \sqrt {1 + 16 + 16} = \sqrt {33} $
Magnitude of $\left| {\overrightarrow {BC} } \right| = \sqrt {{1^2} + {4^2} + {{\left( { - 4} \right)}^2}} $
$\left| {\overrightarrow {BC} } \right| = \sqrt {1 + 16 + 16} = \sqrt {33} $
Magnitude of $\left| {\overrightarrow {AC} } \right| = \sqrt {{2^2} + {8^2} + {{\left( { - 8} \right)}^2}} $
$\left| {\overrightarrow {AC} } \right| = \sqrt {4 + 64 + 64} = \sqrt {132} = \sqrt {4 \times 33} $
$\left| {\overrightarrow {AC} } \right| = 2\sqrt {33} $
Now put the magnitude of these vectors In condition of collinearity.
$\left| {\overrightarrow {AB} } \right| + \left| {\overrightarrow {BC} } \right| = \sqrt {33} + \sqrt {33} = 2\sqrt {33} $
$\left| {\overrightarrow {AC} } \right| = 2\sqrt {33} $
Now you can easily see condition of collinearity satisfy
\[\left| {\overrightarrow {AB} } \right| + \left| {\overrightarrow {BC} } \right| = \left| {\overrightarrow {AC} } \right| = 2\sqrt {33} \]
Hence proved three point A(1, 2, 7), B(2, 6, 3) and C(3, 10, -1) are collinear
Note: Whenever you come to this type of problem, always apply the condition of collinearity. If some points are collinear it means all points lie in a straight line. It’s the geometrical application of collinearity.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE