Answer
Verified
502.5k+ views
Hint: Use the common difference to prove it is an A.P. Find a pattern to find the
general term and substitute for the ${16^{th}}$ term.
The given sequence is 9, 12, 15, 18, …
To prove that the sequence is in A.P, the common difference between any two consecutive
terms must be the same.
$\begin{gathered}
12 - 9 = 3 \\
15 - 12 = 3 \\
18 - 15 = 3 \\
\end{gathered} $
Hence, the common difference is the same for all consecutive terms in the series. So, it is an
A.P.
In an A.P., the first term is denoted as$a$.
$a = 9$
The common difference is denoted as$d$. It is the difference between any one term and its
previous term. It is the same for when calculated for any term in the A.P. It is also used to find the next terms in the A.P.
$d = Tn + 1 - Tn = 12 - 9 = 3$
The ${n^{th}}$term $Tn = Tn - 1 + d$
Let us find the general term first.
$\begin{gathered}
T1 = 9 \\
T2 = 12 = 9 + 3\left( 1 \right) = 9 + 3\left( {2 - 1} \right) \\
T3 = 15 = 9 + 3\left( 2 \right) = 9 + 3\left( {3 - 1} \right) \\
T4 = 18 = 9 + 3\left( 3 \right) = 9 + 3\left( {4 - 1} \right) \\
\end{gathered} $
Hence, we can generalize this A.P. as $Tn = 9 + 3\left( {n - 1} \right)$ …(1)
We can substitute any value for $n$ to find the ${n^{th}}$ term.
The ${16^{th}}$term can be found by substituting $n = 16$in (1)
$\begin{gathered}
Tn = 9 + 3\left( {n - 1} \right) \\
T16 = 9 + 3\left( {16 - 1} \right) = 9 + 15\left( 3 \right) = 54 \\
\end{gathered} $
Note: The general term in an A.P. is found by finding the pattern in which the A.P. progresses.
With the general term, any term in the A.P. can be found easily.
general term and substitute for the ${16^{th}}$ term.
The given sequence is 9, 12, 15, 18, …
To prove that the sequence is in A.P, the common difference between any two consecutive
terms must be the same.
$\begin{gathered}
12 - 9 = 3 \\
15 - 12 = 3 \\
18 - 15 = 3 \\
\end{gathered} $
Hence, the common difference is the same for all consecutive terms in the series. So, it is an
A.P.
In an A.P., the first term is denoted as$a$.
$a = 9$
The common difference is denoted as$d$. It is the difference between any one term and its
previous term. It is the same for when calculated for any term in the A.P. It is also used to find the next terms in the A.P.
$d = Tn + 1 - Tn = 12 - 9 = 3$
The ${n^{th}}$term $Tn = Tn - 1 + d$
Let us find the general term first.
$\begin{gathered}
T1 = 9 \\
T2 = 12 = 9 + 3\left( 1 \right) = 9 + 3\left( {2 - 1} \right) \\
T3 = 15 = 9 + 3\left( 2 \right) = 9 + 3\left( {3 - 1} \right) \\
T4 = 18 = 9 + 3\left( 3 \right) = 9 + 3\left( {4 - 1} \right) \\
\end{gathered} $
Hence, we can generalize this A.P. as $Tn = 9 + 3\left( {n - 1} \right)$ …(1)
We can substitute any value for $n$ to find the ${n^{th}}$ term.
The ${16^{th}}$term can be found by substituting $n = 16$in (1)
$\begin{gathered}
Tn = 9 + 3\left( {n - 1} \right) \\
T16 = 9 + 3\left( {16 - 1} \right) = 9 + 15\left( 3 \right) = 54 \\
\end{gathered} $
Note: The general term in an A.P. is found by finding the pattern in which the A.P. progresses.
With the general term, any term in the A.P. can be found easily.
Recently Updated Pages
According to Mendeleevs Periodic Law the elements were class 10 chemistry CBSE
Arrange the following elements in the order of their class 10 chemistry CBSE
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Trending doubts
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
The term ISWM refers to A Integrated Solid Waste Machine class 10 social science CBSE
Name five important trees found in the tropical evergreen class 10 social studies CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Chahalgani means ATurkish noble under Iltutmish BSlaves class 10 social science CBSE