Show that the sum of all odd integers between 1 and 1000
which are divisible by 3 is 83667.
Answer
Verified
507.6k+ views
Hint: First, check whether the set of required numbers form a series and then find the total number of odd integers divisible by 3 between 1 and 1000. After that make a sum of that using the appropriate sum of series formula.
As, we all know that all odd numbers between 1 and 1000,
which are divisible by 3 are \[{\text{3, 9, 15, }}......{\text{ 999}}\] which forms an A.P.
\[ \Rightarrow \]First term of this A.P is \[{a_1} = 3\].
\[ \Rightarrow \]Second term of this A.P. is \[{a_2} = 9\].
\[ \Rightarrow \]Last term of this A.P. is \[{a_n} = 999\].
\[ \Rightarrow \]Common difference \[d = {a_2} - {a_1} = 9 - 3 = 6\]
So, we know that \[{n^{th}}\] term of any A.P is given as
\[ \Rightarrow {a_n} = {a_1} + (n - 1)d\]
For, finding the value of n.
On putting, \[{a_n} = 999,{\text{ }}{a_1} = 3\] and \[d = 6\] in the above equation. We get,
\[
\Rightarrow 999 = 3 + (n - 1)6 \\
\Rightarrow 999 = 3 + 6n - 6 \\
\]
On solving the above equation. We get,
\[ \Rightarrow n = \dfrac{{1002}}{6} = 167\] numbers in the A.P
Now, as we know that sum of these n terms of A.P is given by,
\[ \Rightarrow {S_n} = \dfrac{n}{2}[{a_1} + {a_n}]\]
So, putting values in the above equation. We get,
So, putting values in the above equation. We get,
\[ \Rightarrow {S_{167}} = \dfrac{{167}}{2}[3 + 999] = \dfrac{{167}}{2}*1002 = 167*501 = 83667\]
\[ \Rightarrow \]Hence, the sum of all odd numbers between 1 and 1000 which are divisible by 3 is \[{S_{167}} = 83667\].
Note: Whenever we came up with this type of problem then first, we find value of n using value of \[{{\text{n}}^{th}}\] term formula in an A.P and then, we can easily find sum of n terms of that A.P using formula of sum of n terms of A.P, if first and last term are given.
As, we all know that all odd numbers between 1 and 1000,
which are divisible by 3 are \[{\text{3, 9, 15, }}......{\text{ 999}}\] which forms an A.P.
\[ \Rightarrow \]First term of this A.P is \[{a_1} = 3\].
\[ \Rightarrow \]Second term of this A.P. is \[{a_2} = 9\].
\[ \Rightarrow \]Last term of this A.P. is \[{a_n} = 999\].
\[ \Rightarrow \]Common difference \[d = {a_2} - {a_1} = 9 - 3 = 6\]
So, we know that \[{n^{th}}\] term of any A.P is given as
\[ \Rightarrow {a_n} = {a_1} + (n - 1)d\]
For, finding the value of n.
On putting, \[{a_n} = 999,{\text{ }}{a_1} = 3\] and \[d = 6\] in the above equation. We get,
\[
\Rightarrow 999 = 3 + (n - 1)6 \\
\Rightarrow 999 = 3 + 6n - 6 \\
\]
On solving the above equation. We get,
\[ \Rightarrow n = \dfrac{{1002}}{6} = 167\] numbers in the A.P
Now, as we know that sum of these n terms of A.P is given by,
\[ \Rightarrow {S_n} = \dfrac{n}{2}[{a_1} + {a_n}]\]
So, putting values in the above equation. We get,
So, putting values in the above equation. We get,
\[ \Rightarrow {S_{167}} = \dfrac{{167}}{2}[3 + 999] = \dfrac{{167}}{2}*1002 = 167*501 = 83667\]
\[ \Rightarrow \]Hence, the sum of all odd numbers between 1 and 1000 which are divisible by 3 is \[{S_{167}} = 83667\].
Note: Whenever we came up with this type of problem then first, we find value of n using value of \[{{\text{n}}^{th}}\] term formula in an A.P and then, we can easily find sum of n terms of that A.P using formula of sum of n terms of A.P, if first and last term are given.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE
Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE
With reference to graphite and diamond which of the class 11 chemistry CBSE
A certain household has consumed 250 units of energy class 11 physics CBSE
The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE
What is the formula mass of the iodine molecule class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
In China rose the flowers are A Zygomorphic epigynous class 11 biology CBSE
What is Environment class 11 chemistry CBSE
Nucleolus is present in which part of the cell class 11 biology CBSE