Answer
Verified
498.6k+ views
Hint: First, check whether the set of required numbers form a series and then find the total number of odd integers divisible by 3 between 1 and 1000. After that make a sum of that using the appropriate sum of series formula.
As, we all know that all odd numbers between 1 and 1000,
which are divisible by 3 are \[{\text{3, 9, 15, }}......{\text{ 999}}\] which forms an A.P.
\[ \Rightarrow \]First term of this A.P is \[{a_1} = 3\].
\[ \Rightarrow \]Second term of this A.P. is \[{a_2} = 9\].
\[ \Rightarrow \]Last term of this A.P. is \[{a_n} = 999\].
\[ \Rightarrow \]Common difference \[d = {a_2} - {a_1} = 9 - 3 = 6\]
So, we know that \[{n^{th}}\] term of any A.P is given as
\[ \Rightarrow {a_n} = {a_1} + (n - 1)d\]
For, finding the value of n.
On putting, \[{a_n} = 999,{\text{ }}{a_1} = 3\] and \[d = 6\] in the above equation. We get,
\[
\Rightarrow 999 = 3 + (n - 1)6 \\
\Rightarrow 999 = 3 + 6n - 6 \\
\]
On solving the above equation. We get,
\[ \Rightarrow n = \dfrac{{1002}}{6} = 167\] numbers in the A.P
Now, as we know that sum of these n terms of A.P is given by,
\[ \Rightarrow {S_n} = \dfrac{n}{2}[{a_1} + {a_n}]\]
So, putting values in the above equation. We get,
So, putting values in the above equation. We get,
\[ \Rightarrow {S_{167}} = \dfrac{{167}}{2}[3 + 999] = \dfrac{{167}}{2}*1002 = 167*501 = 83667\]
\[ \Rightarrow \]Hence, the sum of all odd numbers between 1 and 1000 which are divisible by 3 is \[{S_{167}} = 83667\].
Note: Whenever we came up with this type of problem then first, we find value of n using value of \[{{\text{n}}^{th}}\] term formula in an A.P and then, we can easily find sum of n terms of that A.P using formula of sum of n terms of A.P, if first and last term are given.
As, we all know that all odd numbers between 1 and 1000,
which are divisible by 3 are \[{\text{3, 9, 15, }}......{\text{ 999}}\] which forms an A.P.
\[ \Rightarrow \]First term of this A.P is \[{a_1} = 3\].
\[ \Rightarrow \]Second term of this A.P. is \[{a_2} = 9\].
\[ \Rightarrow \]Last term of this A.P. is \[{a_n} = 999\].
\[ \Rightarrow \]Common difference \[d = {a_2} - {a_1} = 9 - 3 = 6\]
So, we know that \[{n^{th}}\] term of any A.P is given as
\[ \Rightarrow {a_n} = {a_1} + (n - 1)d\]
For, finding the value of n.
On putting, \[{a_n} = 999,{\text{ }}{a_1} = 3\] and \[d = 6\] in the above equation. We get,
\[
\Rightarrow 999 = 3 + (n - 1)6 \\
\Rightarrow 999 = 3 + 6n - 6 \\
\]
On solving the above equation. We get,
\[ \Rightarrow n = \dfrac{{1002}}{6} = 167\] numbers in the A.P
Now, as we know that sum of these n terms of A.P is given by,
\[ \Rightarrow {S_n} = \dfrac{n}{2}[{a_1} + {a_n}]\]
So, putting values in the above equation. We get,
So, putting values in the above equation. We get,
\[ \Rightarrow {S_{167}} = \dfrac{{167}}{2}[3 + 999] = \dfrac{{167}}{2}*1002 = 167*501 = 83667\]
\[ \Rightarrow \]Hence, the sum of all odd numbers between 1 and 1000 which are divisible by 3 is \[{S_{167}} = 83667\].
Note: Whenever we came up with this type of problem then first, we find value of n using value of \[{{\text{n}}^{th}}\] term formula in an A.P and then, we can easily find sum of n terms of that A.P using formula of sum of n terms of A.P, if first and last term are given.
Recently Updated Pages
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Trending doubts
Find the value of the expression given below sin 30circ class 11 maths CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
On which part of the tongue most of the taste gets class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Who is the leader of the Lok Sabha A Chief Minister class 11 social science CBSE