
Show that the sum of ${(m + n)^{th}}$ and ${(m - n)^{th}}$ term of an A.P. is equal to twice the ${m^{th}}$ term.
Answer
521.7k+ views
Hint: Any arithmetic progression follows the sequence of a, a + d, a + 2d, .... + a +(n-1)d . Sum of these all terms will be the sum of that arithmetic progression.
Complete step-by-step answer:
Let ‘a’ be the first term and ‘d’ be the common difference of the given A.P.
From general formula of A.P. we have ‘n’ th term A.P. is ${T_n} = a + (n - 1)d$
The m th term is ${T_m} = a + (m - 1)d$ ... (1)
Then ${(m + n)^{th}}$ term $ \Rightarrow {T_{m + n}} = a + (m + n - 1)d$ ... (2)
${(m - n)^{th}}$ term $ \Rightarrow {T_{m - n}} = a + (m - n - 1)d$ .... (3)
Let’s find the sum of ${(m + n)^{th}}$ and ${(m - n)^{th}}$ terms, adding equation (2) and (3)
$ \Rightarrow {T_{m + n}} + {T_{m - n}} = \left( {a + (m + n - 1)d} \right) + \left( {a + (m - n - 1)d} \right)$
$ \Rightarrow {T_{m + n}} + {T_{m - n}} = \left( {a + (m + n - 1)d} \right) + \left( {a + (m - n - 1)d} \right)$
$ \Rightarrow {T_{m + n}} + {T_{m - n}} = \left[ {2a + (m + n - 1 + m - n - 1)d} \right]$
$ \Rightarrow {T_{m + n}} + {T_{m - n}} = \left[ {2a + (2m - 2)d} \right]$
Taking out ‘2’ from RHS
$ \Rightarrow {T_{m + n}} + {T_{m - n}} = 2\left[ {a + (m - 1)d} \right]$
From equation (1), we can substitute
$ \Rightarrow {T_{m + n}} + {T_{m - n}} = 2{T_m}$
Hence proved.
$\therefore $The sum of ${(m + n)^{th}}$ and ${(m - n)^{th}}$ term of an A.P. is equal to twice the ${m^{th}}$ term.
Note: Arithmetic progression (A.P.) is a sequence of numbers, in which the difference between consequent numbers is a fixed number (common difference) throughout the sequence. ${n^{th}}$ term of A.P. depends on first term(a) and the common difference(d) ${T_n} = a + (n - 1)d$
Complete step-by-step answer:
Let ‘a’ be the first term and ‘d’ be the common difference of the given A.P.
From general formula of A.P. we have ‘n’ th term A.P. is ${T_n} = a + (n - 1)d$
The m th term is ${T_m} = a + (m - 1)d$ ... (1)
Then ${(m + n)^{th}}$ term $ \Rightarrow {T_{m + n}} = a + (m + n - 1)d$ ... (2)
${(m - n)^{th}}$ term $ \Rightarrow {T_{m - n}} = a + (m - n - 1)d$ .... (3)
Let’s find the sum of ${(m + n)^{th}}$ and ${(m - n)^{th}}$ terms, adding equation (2) and (3)
$ \Rightarrow {T_{m + n}} + {T_{m - n}} = \left( {a + (m + n - 1)d} \right) + \left( {a + (m - n - 1)d} \right)$
$ \Rightarrow {T_{m + n}} + {T_{m - n}} = \left( {a + (m + n - 1)d} \right) + \left( {a + (m - n - 1)d} \right)$
$ \Rightarrow {T_{m + n}} + {T_{m - n}} = \left[ {2a + (m + n - 1 + m - n - 1)d} \right]$
$ \Rightarrow {T_{m + n}} + {T_{m - n}} = \left[ {2a + (2m - 2)d} \right]$
Taking out ‘2’ from RHS
$ \Rightarrow {T_{m + n}} + {T_{m - n}} = 2\left[ {a + (m - 1)d} \right]$
From equation (1), we can substitute
$ \Rightarrow {T_{m + n}} + {T_{m - n}} = 2{T_m}$
Hence proved.
$\therefore $The sum of ${(m + n)^{th}}$ and ${(m - n)^{th}}$ term of an A.P. is equal to twice the ${m^{th}}$ term.
Note: Arithmetic progression (A.P.) is a sequence of numbers, in which the difference between consequent numbers is a fixed number (common difference) throughout the sequence. ${n^{th}}$ term of A.P. depends on first term(a) and the common difference(d) ${T_n} = a + (n - 1)d$
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Trending doubts
Truly whole mankind is one was declared by the Kannada class 10 social science CBSE

Explain the three major features of the shiwaliks class 10 social science CBSE

Find the area of the minor segment of a circle of radius class 10 maths CBSE

Distinguish between the reserved forests and protected class 10 biology CBSE

A boat goes 24 km upstream and 28 km downstream in class 10 maths CBSE

A gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE
